
-A199 628 CONNON DATABASE INTERFACE FOR HETEROGENEOUS SOFTHARE 1/2
ENGINEERING TOOLS(U) AIR FORCE INST OF TECH
WRIGHT-PATTERSON AF8 ON SCHOOL OF ENGINEERING

UNCLASSIFIED T D CONNALLY DEC 87 AFIT/GCS/ENG/7D-8 F/G 2/5 NL

'Io

14-1111"2----5 1111111-5l
I . iig jjjjj2

- ~=.=2.2

11111 1,8

_ 125 j 1.4 IIIi.

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDAROS-1963-A

I

IC rn rILE (jP~Y

00

COMMON DATABASE INTERFACE
FOR HETEROGENEOUS SOFTWARE

ENGINEERING TOOLS

THES IS

Ted D. Connally
Captain, USAF

AFIT/GCS/ENG/87D-8

DTIC
A"7' 7TTE

MR0 2 1988

*DEPARTMENT OF THE AIR FORCE H
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

ISTIU STATEMENT________A

*APToved for pub~c reaw: '88 3 01 140
Dhrt~1butkm UnlIted

UPCLASS IF I ED
RITY CLASSIFICATION OF TtIS AGE

SForm Approved

REPORT DOCUMENTATION PAGE OMNo. 070v8

REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;
2b. DECLASSIFICATION I DOWNGRADING SCHEDULE distribution unlimited.

Z. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/GCS/ENG/87D-8

Sa. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(If applicable)

School of Engineering AFIT/ENG

i. ADUESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIPCode)

Air Force Institute of Technology (AU)
w " Wright-Patterson AFB, Ohio 45433-6583

Ia. NAME OF FUNDING/SPONSORING 8ab. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

OSD/SDIO I S/BM
;c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT ITASK WORK UNITPentagon, Wash DC 20301-7100 ELEMENT NO. INO NO ACCESSION NO.

TITLE (Include Security Classfication)

COMMON DATABASE INTERFACE FOR HETEREOGENOUS SOFTWARE ENGINEERING TOOLS (UNCLASSIFIED)

PERSONAL AUTHOR(S)
Ted D. Connally, B.S., Capt, USAF

13a. TYPE OF REPORT 13b. TIME. COVERED 14. DATE OF REPORT (Year,MonthDay) 1S. PAGE COUNT
MS Thesis IFROM _ ___TO _ __1987 December 230

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identifY by block number)
FIELD GROUP SUB-GROUP Database Management Systems;Programming(Comuters);
1e 05 Computer Files;Information Transfer;Interfaces;

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Thesis Chairman: Dr. Thomas C. Hartrum

Associate Professor of Computer Engeineering

'IIM

Hatrmlm- FIT/N

20. DISTRIBUTION/ AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
X3UNCLASSIFIED/UNLIMITEO 0 SAME AS RPT. 0 DTIC USERS UNCLASSIFIED

12a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 122c. OFFICE SYMBOL

Dr. Thomas C. Hartrum (513) 255-3576 AFIT/ENG
0 Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

* UNCLASSIFIED

The project involved the design and implementation of a common
database interface to integrate a set of heterogeneous software
engineering tools. These tools are implemented on a variety
of computer workstations, use incompatible data files, and provide
little or no database support. The lack of database support
and data sharing prevented having an integrated software design
envi ronment.
aThe emphasis of this research was placed on implementing

afully functional database interface which integrated the
existing tools and supports the addition of new tools as they
become available. The approach selected to implement the interface
was the use of a standard data file and a data manager. The
standard data file supports all data transfer and the data
manager provides all database transaction support.

The unique aspects of the interface is the ability of the
standard data file to support multiple tools and the data manager's
use of a generic data definition table. The standard data file
design addresses the issue of providing flexible file format
which can be modified to support different tools. The use of
the data definition table is the key mechanism which allows the
data manager to manipulate the data files from various tools.
The data definition table describes the contents of the file and

* supports the data manager in perforrnIn database updates and
retrievals.

The interface was fully impJ4eented and successfully
integrated the existing tools./ A tool, developed in a separate
research effort, was also suc-cessfully integrated with the other
tools which demonstrated t/iera'sability to incorporate
new tools.

AFIT/GCS/ENG/87D-8

COMMON DATAB3ASE INTERFACE
FOR HETEROGENEOUS SOFTWARE

ENGINEERING TOOLS

THESIS

Ted D. Connally
Captain, USAF

AFIT/GCS/ENG/87D- 8

0 Approved for public release; distribution unlimited

DTIC
~MARO021988.

H

AFIT/GCS/ENG/87D-8

COMMON DATABASE INTERFACE FOR

HETEROGENEOUS SOFTWARE ENGINEERING TOOLS

THESIS

4

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Information Systems

Ted D. Connally, B.S.

Captain, USAF

December 1987

Approved for public release; distribution unlimited

Preface

This report documents my efforts to design and imple-

ment a database interface which integrates the software

engineering tools available within the Air Force Institute

of Technology's Software Engineering Laboratory (SEL). My

goal for this thesis was to implement a fully functional

interface which not only integrated the existing tools but

allows for future tools to be incorporated into the SEL

environment.

The interface was successfully implemented using a

standard data file to transfer data between the tools and a

data manager which performs all database transactions.

eHopefully, the implementation of this interface will support

and encourage the development of new software engineering

tools for use within the SEL.

I wish to express my sincere appreciation to Dr. Thomas

C. Hartrum, my thesis advisor, for all his assistance and

guidance throughout this effort. I also wish to thank my

committee members, Capt Mark Roth and Capt James W. Howatt,
I

for their contributions to this thesis. I would also like

to recognize Capt Steven E. Johnson for his contributions in

helping me test the database interface using the SADT tool mn For

'A& I
he developed.

Ted D. Connally

p ~ f Avalimbi1itv Codel
iil tijir

i)1bit S V 1

Table of Contents

Page

Preface * * ii

Pit of F g roe m 0- 0 0 * ***i***

Sctat .. oe.- * . * * 4i

I.Aproc andtPesenttion 0................... 1

II. Review of AFIT Environment and Literature 8

System 690 Configuration 8
Database Functionis 14

Software Engineering Environments ... 14
Data Manager Functions *... 19

Tool Integration 0. 22

Suimmary * 25

III. Requirements Analysis 27

Overview 29
Standard Data File 31

Data Format 32
File Description 36

Data Manager............ 40
*Tool/User Interface............. 40

Data Retrieval.................... 45
Database Update 48

Common Database............................. 50
Summary 50

IV. System Design.................................... 52

Introduction 52
System Structure............................ 52

Data Manager........................... 52
Standard Data File..................... 56

IF.Common Database......................... 56

Transaction Processing 56
Retrieval.............. 56
New Write........... 57

V. DealeSesin 59

Suntrduction 00o.. 59

Standard Data File 59
File Description Header 59

Session Identification..........6 60
Tool Identification 61
Phase Indicator -.......... 61
Type Indicator .6............... 62
Start/Stop Times 62
Data Entity Summary 0............ 62

Data File Entries 0........... 63
Data Name 64
Field Length 64
Multi-line Indicator 65
Number of Fields Indicator 65
Direction and Type Indicators 65
Data Contents 65
Entity Structure 65

Data File Structure 66
(.Data Manager 0..0.... 66

Tool Data Definition Table 68
Table Usage ... o....*s.*** o.... 68
Table Format 68
Element Entry Order 72

Tool Description Table 72
Tool/User Interface 73

Tool Data Request 73
Interface Design 75
Results Reporting 76

Data Manager Retrieval Function 76
Request Validation................. 76
Session Control 81

Session Entity Table 81
Session Identification Table .. 82
Data Identification 83
Data Retrieval................. 84
Standard Data File Build ... 84

Data Manager Update Function 85
Request Val idation................85
Database Update............... 87

Common Database 89
Summary 90

iv

VI. Implementation, Test, and Evaluation 91

Introduction 91
Implementation 91

Environment 91
Interface00......0..... 92

Error Handling 94
Test 96
Evaluation .o ... * .. 98

New Tool Integration o........ o 99
Existing Tool Integration 99
Performance 100

Results o....o......... 101
Summary o............................ 103

VII. Conclusion and Recommendations 0....... 105

Conclusions 105
Recommendations 107

Appendix A: Data Dictionary Database Relations and
Data Dictionary Descriptions 109

Appendix B: Standard Data File Format 124

Appendix C: Data Manager Database
Relation Definitions 132

Appendix D: User's Manual for the
SEL Data Manager 146

Appendix E: Tool Designer's Guide-.... o..... 167

Appendix F: System Configuration Guide 184

Appendix G: Summary Paper 193
Bibliography 0................0................ 217

Vita o......... 219

The following additional thesis volumes are maintained at the
Air Force Institute of Technology, Department of Electrical
and Computer Engineering.

Point of Contact: Dr. Thomas C. Hartrum

Volume II: Data Manager Code

Volume III: Data Dictionary/Data Manager File
Translator Code

v

List of Figures

Figure Page

1. Current Software Engineering Configuration ... 2

2. Sample Data Entity Entry in Design Phase 10

3. Database Schema for a Data Entity Within
the Design Phase * 12

4. Sample SADT Diagram 13

5. Current System 690 Configuration 15

6. Goal System Configuration 28

7. Data Manager SADT Top Level 29

8. Data Manager SADT First Level 30

9. Process Data Dictionary Entry 34

10. Process Database Relations 35

11. Batch Data Manager Interface 41

12. Interactive Data Manager Interface 41

13. Overall System Structure 53

14. File Description Header Format 60

15. Data Element Record Format 64

16. Standard Data File Format 67

17. Tool Data Definition Table 69

18. Tool Description Table 73

19. Tool Data Request Format 74

* 20. Multi-Level Transaction Table 78

21. Session Entity Table 81

22. Session Identification Table 82

_ 23. Software Testing Steps 97

24. Data Manager ASC Performance Results 102

vi

S

AFIT/GCS/ENG/87D-8

Abstract

The project involved the design and implementation of a

common database interface to integrate a set of heterogene-

ous software engineering tools. These tools are implemented

on a variety of computer workqtations, use incompatible data

files, and provide little or no database support. This lack

of database support and data sharing prevented having an

integrated software design environment.

The emphasis of this research was placed on implement-

ing a fully functional database interface which integrated

the existing tools and, most importantly, supports the

addition of new tools as they become available. The

approach selected to implement the interface was the use of

a standard data file and a data manager. The standard data

file supports all data transfer and the data manager

provides all database transaction support.

The unique aspects of the interface is the ability of

the standard data file to support multiple tools and the

data manager's use of a generic data definition table. The

standard data file design addresses the issue of providing a

flexible file format which can be modified to support

different tools. The use of the data definition table is

the key mechanism which allows the data manager to manipu-

late the data files from various tools. The data definition

Vii

table describes the contents of the file and supports the

-~ data manager in performing database updates and retrievals.

The interface was fully implemented and successfully

integrated the existing tools. A tool, developed in a

separate research effort, was also successfully integrated

* with the other tools which demonstrated the interface's

ability to incorporate new tools.

viii

COMMON DATABASE INTERFACE FOR
HETEROGENEOUS SOFTWARE ENGINEERING TOOLS

I. Introduction

* Background

Within the Air Force Institute of Technology (AFIT), an

on-going effort exists to develop software design tools to

support a software designer through the phases of the

software development life cycle. As part of this effort, a

series of theses (4, 16, 17) have produced a set of software

engineering tools to form System 690. System 690 provides a

~j. design environment for use within the AFIT Software Engi-

neering Laboratory (SEL) . The tools run on separate

workstations, and are connected via a local area network and

modems to a mainframe computer which supports a relational

database management system (see Fig. 1).

The primary tool within System 690 is a data dictionary

editor (4) which supports the Requirements, Design, and

Implementation phases of the software development life

cycle. This editor currently runs on Zenith Z-100 work-

stations and provides the designer a screen-oriented data

dictionary editor. A Structured Analysis and Design

Technique (SADT, trademark of SofTech, Inc.) Editor (17) is

also available which runs on a Sun-3 workstation. This tool

provides an interactive graphics editor for SADT diagrams.

1

WORKSTATIONS

WORKSTATIONS

GANAL VA
SEL

MICROCONPUTERS

LOCAL
IGE

TEPMMALS

HOME

MICROCOMPUTERS

9. Figure 1. Current Software Engineering Configuration

e ' The goal of System 690 is to provide an integrated

1% system in which a designer could sit down at a workstation,

, download the necessary data from a central database, work o

!b.

4I

a portion of the design, and when finished, upload the

modified data back to the database. This data, when stored

in a comprehensive, centralized database, would provide a

system which could share data between tools and provide the

means to document a software project
throughout its entire

life cycle.

However, a data incompatibility problem exists. The

current tools each use a different format for their data

files and only a few of the tools interface with the

database management system. This data incompatibility

* problem is being compounded as new tools, using other file

formats, are added to System 690. The inability of current

and future tools to store and share data prevents having an

integrated software development environment within the SEL.

Solving the data incompatibility problem would provide two

major benefits: an integrated system for use by AFIT

students and faculty and a design methodology which could be

applied to similar problems in other software development

organizations.

PROBLEM

The main problem existing in System 690 is the inabil-

ity of the separate tools to use a common database and to

share data. Implementing a data manager which provides a

common interface between the different tools and a central

database was the thrust of this effort. The data manager

3

Sal

had to be adaptable so that it could incorporate changes to

existing tools and support the addition of new tools.

Scope

The thesis effort covered two specific areas:

1) Analysis of the existing tools and database to
design a standard data file format enabling
both current and future tools to share a
common database.

2) Based on this analysis, the design and
implementation of a data manager providing an
interface between the tools and the common
database.

The design of the standard data file format and the

development of a working data manager were the primary areas

of emphasis. The ability to add new tools to the system was

the main design consideration, with the development of a

working data manager which integrates the current System 690

tools being the primary objective.

The computer resources available within the SEL

dictated the configuration used to implement the data

manager, central database, and standard data file. The data

manager was implemented on a VAX 11/785 computer, using the

Berkeley 4.3 Unix operating system. The central database

was developed using the Ingres relational DBMS. The use of

Ingres required that the data manager be developed using the

"C" programming language because "C" is the only language

available on the VAX system which supported embedded queries

with the database. The queries were performed using the

Embedded Query Language (EQUEL) provided with Ingres. The

4

SI

standard data file had to be in a format which was com-

patible with the Unix and MS-DOS operating systems. This is

to support the transfer of the standard data file between

the System 690 tools and the data manager.

Assumptions

Two assumptions were made in the development of the

data manager. The first assumption was in determining the

primary communication interface to support between the tools

and the data manager. Because the data manager resides on a

central computer and the bulk of the tools reside onI

individual workstations, the communication interface focuses

on supporting remote accesses, either modem or local area

network. The second assumption was that a System 690 tool

designer either has a sufficient database background to

identify the contents to use in the data manager control

relations or can obtain the necessary assistance to identify

them.

Approach and Presentation

The thesis effort was carried out in the following

phases:

Phase 1 -- Reviewed the existing System 690
* configuration and current literature

to determine system requirements.

Phase 2 -- Requirements analysis of the standard
data file format and data manager.

Phase 3 -- Design of the standard data file
format and data manager.

5

Phase 4 -- Development and implementation of the
* -. standard data file format and data

manager.

Phase 5 -- Measurement of data manager perfor-

mance.

Chapter II contains the review of the current system

configuration and literature. The review examined the

'current System 690, the database functions other systems

identified as important, and techniques used to integrate

heterogeneous tools. The System 690 review concentrated on

the features, capabilities, and requirements of its tools.

Other integrated environments were reviewed to identify the

database function requirements necessary to provide a sound

environment. Finally, the methods used by other systems to

integrate stand-alone tools were examined.

The requirements analysis is in Chapter III. The

analysis established the requirements for the data manager

and the standard data file. The most important requirement

established was the need to be able to build the standard

data file using a "generic" means to describe the standard

data file's contents for each of the tools. The data

description needs to support both updates and retrievals to

reduce maintenance overhead and prevent possible errors

• arising from having the same basic data maintained in two

places.

Based on the requirements analysis, the standard data

file and data manager were designed. The design analysis

" consisted of both a system design and a detailed design.

6

0dR.P

. ~The system design in Chapter IV presents the system design

selected for the data manager, standard data file, and their

configuration. The detailed design of the standard data

file, data manager, and its components are in Chapter V.

The design concentrated on providing a system which can

easily incorporate new tool data file formats as the new

tools are added to System 690.

Chapter VI presents the implementation features and

testing procedures followed in implementing the data

manager. This phase was programming intensive with the

* objective of obtaining a working system. Chapter VI also

contains an evaluation of the data manager's performance and

its ease of integration with software engineering tools.

The final chapter summarizes the results of the thesis

and provides suggestions for future enhancements to the data

manager and the System 690 environment.

7

O,

II. Review of "FIT Environment and Literature

Introduction

S The main work done in this thesis was the implementa-

tion of a data manager which provides a generic interface

between System 690 tools and a central database. To gain a

better understanding of the problem and its solution, a

review was made of the current system and literature to

examine the work others have done in similar efforts.

There are three topics which provide a strong insight

* into this thesis. The first topic is a review of the work

accomplished in previous thesis efforts which produced the

* current System 690 configuration. The next topic is an

examination of the database functions which the data manager

needed to address. The final area studied is the method-

ology other systems have used to integrate non-homogeneous

tools.

System 690 Configuration

Before examining other systems and how they address

problems similar to those of this thesis, the current System

690 tools and their development are reviewed. The objec-

* tives the tools are trying to achieve, the tools themselves,

and their configuration are discussed.

The basic objective of System 690 is to support the

standard software development methodology established in the

Software Development Documentation Guidelines and Standards

8

~ (5). These guidelines establish a standard documentation

' guide which can be used for an entire software development

project (5: 2). The method used to support this standard is

a data dictionary. A dictionary entry is established for

the requirements, design, and implementation phases of the

software life cycle. Each of these phases consists of a set

of action entities and a set of data entities for a total of

six types of dictionary entries. Refer to Figure 2 for a

sample data dictionary entry.

Several thesis efforts have produced a set of automated

* tools to support the concepts set forth in the Software

Development Documentation Guidelines and Standards (5).

Thesis efforts by Thomas (16) and Foley (4) have provided an

e-0 automated data dictionary (DD) editor. The DD editor

addresses all three phases (4) established in the Guidelines

and Standards. Urscheler's thesis (17) produced an interac-

tive graphics SADT editor.

Thomas' thesis provided one key component to System

690: a data dictionary database (6: 652). Thomas developed

* the database schema for all the dictionary entries (16: 84-

'5 147). He also implemented an interactive DD editor which

4 interfaced with the database (16: 166-182).

Thomas' DD editor was implemented on a VAX 11/780

running the UNIX operating system (16: 184). Because of the

UNIX environment, Ingres was selected as the DBMS for the

5, 9

a'

LR &N*4

tool (16: 185). This configuration established the environ-

ment Foley used in his work.

'p.,

NME: messparts
PRJEC: NE70-ISO
TYPE: PARAMETER
IERI TICN: Dec message parameters.
DATA TYPE: Composite, probably C structure or PASCAL record.
MIN VALUE: None
MAX VALUE: None
RANGE oF VAuLE: Nam
VALUES: None
PART OF: None
O ITICN: SRC

DST
SPN

* DPN
USE

Buffer
ALIAS: Message Parts

WHEEZE USED: Passed from Decompose Message to Validate Parts
COMENT: Part of earlier design

ALIAS: messy-parts
WHEZE USED: Passed from Dup Data to Flush Buffer.
CCK4ENT: Part of existing library.

REFERENE: M9GPARTS
aTYPE: SADT

VRsmICN: 1.2
VERSICN CANGES: Cbmpoent USE added to allow network messages
DATE: 11/05/85
AIIlIE: T. C. Hartrum
CALLING PCES: Process Message

PROCESS CALLED: Decomxose_Message (parts list)
DIRRCTICN: up
I/O PARAMETER NAME: parts_list

CALLI PR : Process Message
PROCES CALLED: Process Network 4 Messages
DIRECTION: down

O I/O PARAMETER NAME: parts

Figure 2. Sample Data Entity Entry
in Design Phase (5: 29)

10

. .i.. . .. -11J. .1"1" " "

Foley's thesis was an enhancement to Thomas' work.

* Thomas' tool was implemented on a heavily used system within

AFIT and was slow enough to generate complaints from its

users (4: A-4). To address this issue, Foley developed a

microcomputer (Z-100) based DD editor which allowed the user

to perform the bulk of his work without directly interacting

with the database (4: 45-72).

Foley's DD editor implemented a forms based editor for

each of the phases but only implemented a prototype database

interface for the design phase data (4: 70). This interface

converts the DD editor tool file into database entries and

.1,9 vice-versa (4: 70). Unfortunately, this code is highly

specialized for this phase and extensive work would be

-'p II~A required to extend the interface for the other phases.

Foley's thesis provided two key components to System

690. First, the Z-100 based DD editor provided a tool which

was significantly more "user friendly" (4: 90) than Thomas'

tool and the additional work on the design phase further

refined the database schema (4: 35). Refer to Figure 3 for

0 the schema of the data entity in the design phase.

"p. While Thomas and Foley developed a text-based means to

create data dictionary entries, Urscheler developed a

graphics-based SADT editor for use within the requirements

phase (17). A SADT diagram (see Figure 4) represents one

level of a hierarchical decomposition of a system's func-

tions (13: 192). The SADT editor allows a user to edit and

'-% manipulate an entire diagram (level) at a time.

parameter papassed
project c12 project c12
paname c25 paname c25
datatype c25 prcalling c25
low c15 prcalled c25
hi c15 direction c4
span c60 iopaname c25
status cl

padesc pavalueset
project c12 project c12
paname c25 paname c25
line i2 value c15
description c60

paalias pahierarchy
project c12 project c12
paname c25 hipaname c25
aliasname c25 lopaname c25
comment c60
whereused c25

. pahistory paref
project c12 project c12
paname c25 paname c25
version clO reference c60
date c8 reftype c25
author c20
comment c60

Figure 3. Database Schema for a Data Entity
Within the Design Phase (4: 37)

As part of this tool, Urscheler intended to implement

an interface with the DD editor database to store the data

dictionary information generated by his tool (17: 23) but

the interface was not completed (17: 43). Further research

(9), occurring in conjunction with this thesis, is enhancing

12

S.

the functionality of the SADT editor by providing a more

complete set of the SADT language. The research is also

developing the means to generate and use data dictionary

information. The enhanced SADT editor is being designed to

use the standard data file generated by the data manager

developed in this thesis.

ATHOR: J. Uracthler JDAME9Q-2fi-815READER I
POCT: RAW0 REV: 1.8 DATE

User Requet

Deteoml Parameters
no Mom~

Requestt

FuCtion File Structure

S Update

Scr ew mVaable* Diagram
D

,""- 3

NODE: TITU: Edit Diagram NUMBER: A3
2.4

Figure 4. Sample SADT Diagram (17: B-8)

The DD editor and SADT editor are connected to a VAX

% 11/785 to create the current System 690 configuration. As

shown in Figure 5, there is an excellent opportunity to

create an integrated environment where all the tools share

"? data via the Ingres DBMS. However, prior to this research,

-P13

......

only the design phase of the DD editor could interface with

Ingres. This prevents the tools from sharing information

and automated consistency checkers cannot be used against

the various phases of a design (6: 652). This inability of

tools to use and share a common database is the main problem

this thesis addresses.

Database Functions

In order to support System 690 tools, the data manager

is responsible for many functions that the Ingres DBMS

system does not provide. To gain a better insight into what

6 these functions are, different software engineering environ-

ments (SEE) were reviewed to determine the basic goals of a

SEE. The focus was then placed on the functions a SEE's

data manager had to provide.

Before beginning the discussion, one important point

must be made. The literature brought out a relationship

between SEE and CAD/CAM database requirements. Randy Katz

indicated this relationship by grouping larg-e software

systems and integrated circuit designs into the category of

"complicated engineering artifacts" (12: 191). This

relationship proved useful in the examination of database

functions because of the large amount of research occurring

in the CAD/CAM database area.

Software Engineering Environments. There are a number

of SEEs currently under development, but the two most

applicable to this thesis are ARGUS (15) and SODOS (7).

14

W7WEV Ck;W-7 VW V ' w U WWK W'N .- ~ Jq~ WTIVX" f V V WW T UW-W MW r ~~~~p '

Both of these systems provide support throughout the

software life cycle (SLC), whereas other systems tended to

focus more on the coding phase and the associated tools, ie.

text editors, compilers, debuggers, etc.

\JDDj

*DESIGNFOEVASDD 'ITERFACE 11/780

DD CODE

"DATABASE

EDTO

FUTURE
TOOLS

Figure 5. Current System 690 Configuration

15

U.
. vev ~ ' &i~-

Before reviewing these two systems, a brief overview of

* ~ general SEE features is presented. These features are

extracted from a survey article (3), which summarized the

general features a SEE should have. Its author points out

that these features are not absolute for all systems (3:

457) but they reflect the goals of both ARGUS and SODOS.

The suggested SEE features are that the SEE:

1) support the entire life cycle,

2) allow links between phases of the life cycle, both
forward and back,

3) contain a consistent interface,

4) contain a project/software/group database,

5) support project management,

6) enforce configuration management,

7) be expandible/flexible,

8) contain powerful tools, which are integrated and
automated,

9) have reusable tools; facilitate reusability of
software, and

10) be portable (3: 457).

System 690 addresses most of these features but the key

objectives for this thesis are 1-4, 7, and 8. The data

manager needs to support each of these features. The first

four topics are covered with respect to the ARGUS and SODOS

systems. The flexibility and integration issues are

addressed in the following section of this chapter.

The ARGUS system is a comprehensive software engineer-

ing environment using "CAD/CAM-like" principles for software

16

- development (15: 129). It shares many of the same objec-

tives indicated above. The primary functions of ARGUS are

to

"..provide computer assistance with the specifica-
tion, analysis, construction, and maintenance of
various software products throughout the total life
cycle. Following a CAD/CAM-like approach, this semi-
automated system assists the user in capturing and
controlling design configurations and tracing these
specifications throughout the entire lifecycle (15:
130)."

ARGUS supports the full range of the software life

cycle. It breaks the life cycle down into phases and

provides "toolboxes", containing phase specific tools, to

support the user within a particular phase (15: 131-132).

These toolboxes are Manager, Designer, Programmer, Verifier,

and General. The Designer Toolbox is the most relevant to

System 690 because it contains the tools used for document-

ing and controlling the formal design of a software system.

The Designer Toolbox is the portion of ARGUS which best

-~ utilizes its CAD/CAM functions. It controls both graphic

and textual data in its support of requirements analysis and

* design (15: 133). It provides templates to the user for

* each of the reports used within each phase of the software

life cycle. Its use of a relational database to control the

I data allows ARGUS to maximize its information leverage.

This leverage is provided by storing all data in a central

database where it can be projected to any designer.

I The power provided by the relational database makes the

database a key part of the ARGUS system (15: 129, 133). One

17

of the most powerful aspects of the database is its capabil-

ity to maintain only one copy of the data and project this

data to tools based on an appropriate template. This

concept has yielded a data compression ratio of nearly I to

4. This concept provided the basis for the data manager

design and shows the possible benefits to be derived.

The SODOS (Software Documentation Support) system is

another SEE which supports the entire Software Life Cycle

(SLC) (7: 8). Its emphasis is on supporting the definition

and manipulation of software development documentation.

* SODOS has two main objectives. One is to provide main-

tenance personnel all the information generated during the

specification and development phases, and the other is to

help system developers generate the necessary documentation

with a minimum of extra effort.

SODOS is based on the use of a relational DBMS and

stores all data in the project database (7: 8). The data

generated in each phase is inter-related based on a set of

pre-defined relationships. A model is used to identify the

6 information in the SLC, the relationships among the informa-

tion, and how it is used.

The data for each phase is stored in accordance with a

document definition which allows the document administrator

to define new documents based on a database schema (7: 9).

This schema establishes the document structure, inter-

* - relationships, keywords, and related documents. This format

18

... provides a large amount of flexibility from project to

project. As part of this definition capability, the

relationships between the data in the separate phases are

established, which allows easier consistency checking.

The SODOS system exhibits many of the characteristics

of the current data dictionary editor used in System 690.

Both systems address the requirements, design, and implemen-

tation phases of the SLC. The concepts shown in the SODOS

system point to the feasibility of this thesis effort and

its contribution to providing a more useful environment.

* Data Manager Functions. The surveyed environments all

utilized some type of data manager to interface with a DBMS

.iftto stare and manipulate the data. These data managers are

'4 pivotal to the success of SE~s and, as stated earlier, to

the success of CAD/CAM systems. The bulk of the research

performed in defining a data manager's functions is in the

CAD/CAM area, especially in VLSI design. For this reason,

much of the following is extracted from CAD/CAM environments

but is applicable to SEEs as well.

A good summary of the requirements and problems a data

manager must address was developed by G. P. Barabino and

others (1). The requirements and problems are the

1) management of complex data schemata,

2) likelihood of frequent changes in data organiza-
tion,

3) manipulation of huge amounts of data,

19

.~
UP'

4) control of data coherency and redundancy minimiza-

tion,

5) security against unauthorized accesses,

6) provisions for back-up and crash recovery proce-

dures,

7) support of concurrent access to data by many
designers,

8) support of design administration and project
management,

9) automatic enforcement of some consistency con-
straints on data,

10) support of design hierarchy and complex objects,

11) use of long fields for storage and retrieval of
* unformatted information,

12) provisions for navigational facilities among
* design data,

13) support of long lasting transactions, and

14) interactive level performance (1: 577).

The above requirements are in agreement with other

authors except for managing versions, which is not listed.

Barabino does address versions in another article (2: 800)

which improves his approach.

As Barabino points out, the first seven requirements

can probably be handled by current relational DBMSs (1:

577). However, the remaining functions require either an

* extension to the DBMS or a data manager which works with the

DBMS. The Barabino effort used the latter approach,

developing a means to satisfy the requirements without

* modifying the DBMS. The system utilizes three interfaces:

1) Direct access with the DBMS (Ingres)

20

2) A Data Base Interface (DBI) Module which supports
the requirements listed in items 7 - 12

3) A Local Information Processing Subsystem (LIPS)

which provides an interface between the applications
and the DBMS for limited design data subsets requiring
short response times. (1: 578)

The DBI is important because it provides several func-

tions which are similar to those required in this thesis.

The DBI is implemented using EQUEL (Embedded QUEL) and

supports project management, consistency constraints, design

* hierarchies, data management, and navigation through the

data (1: 578). According to the authors, it allows the data

* management and application program problems to be addressed

separately. By doing so, the DBMS structure can be changed

without changing the application and vice-versa. The DBI

* also addresses the management of design versions and

alternatives (2: 800).

The functions a data manager are to provide have also

been addressed by Randy Katz (11, 12). Katz's consider-

ations are similar to Barabino's (1) with the addition of

the following:

1) A design librarian supporting check-in/check-out of
design parts from the database

2) A method to track design versions (11: 27).

The design librarian is an important component because

it coordinates all access to shared design data in the

central database (11: 33). By employing proper check-out

policies, it guarantees only one in-progress version exists

21

of an object. This control, allowing the objects to be

viewed but not updated, improves the usability of the

system.

-~ The means to manage design versions is also a vital

component within a design environment. Katz feels that

proper support of versions is critical for successful design

data management (12: 192-193). Two of the primary goals he

feels must be met are for the versions to require minimal

redundancy and be quickly retrievable. Katz presents

several approaches for version management which the inter-

ested reader may find discussed in detail in 12: 193-200.

Tool Integration

The ability to integrate heterogeneous tools is

becoming a key research concern as more and more such

systems reach the user's market (10: 111). This is espe-

cially true as evidenced by this definition of a SEE:

a set of tools, structures, rules, and procedures
that together provide a framework for software develop-
ment and support (3: 456)."

The key part of this definition is that the tools and

A, structures work together. Since a goal of this thesis is to

provide a means to integrate System 690 tools, the methods

used to interface different tools are examined.

There are several methods used to interface different

tools. The most common are

A 4 1) ad hoc communication between each pair of tools
* ..'..using pre- and post-processors,

22

2) placing all the applications within one environ-
sent, and

3) using a single database manager with each applica-
tion interfacing with the data manager to access the
data stored in a DBMS (10: 112-113).

Of these, the third is most relevant to this thesis. Ad hoc

communications are not considered because of their inef-

* ficiencies (10: 112). Placing all tools in one environment

is not relevant given the current configuration and goals of

System 690.

A data manager has been implemented in systems such as

Polylith (14) and SDB (8). The basic concept of these

systems is to provide a single interface between the tools

and the central database. Without this single interface,

each tool would have to manage a "power set" number of

interfaces to communicate with other tools (14: 13). The

efficiency and applicability of this approach to the System

690 data manager makes these concepts especially relevant.

The Polylith system tries to join various component

tools by addressing the problems of data interchange and

tool synchronization (14: 12-14). The system uses a

Polylith grammar, in conjunction with a Message Handler, to

provide the tool interface. The Polylith grammar defines

* the data and format required for a tool and the Message

Handler uses this information to retrieve and build the

appropriate message for the tool.

* The Message Handler provides the data manager role in

the Polylith system (14: 13-17). It carries out all

23

V.-

transactions requested by the tools and tracks the status of

the data. The author identified the Message Handler's

ability to perform automatic data transformation as a novel

aspect of the Polylith system. The biggest advantage of

this capability is that the system allows the addition of

new tools to the system without having to discard or modify

old tools.

The SDE system offers a similar approach to the tool

integration issue (8). Hsu addresses the problem of

interfacing design tools which were originally designed to

* be stand-alone systems (8: 733). The SDE integrates the

.4 system's various tools.

The data manager is the kernel of the SDE and is based

'S. on the Ingres DBMS (8: 734-735). It controls all access to

the data, defines the data structure, and provides a common

database for the various designers. It also manages version

and configuration control.

Although the data manager is vital to the SDE, a tool

manager is required to perform the actual tool integration

6(8: 735-736). A basic data structure was identified which

was common to all tools. This structure is the basis for

the tool integration. The tool manager adds tool specific

views and information to the basic structure to allow the

tools to interface. Once the tool receives the data, it can

*" operate in a stand-alone mode, and upon completion, load the
A

new data into the common database via the tool manager.

24

I J1Il.,O W

Avke4k*

25"Mz !IZZ "v"

4.. The key features observed in the Polylith and SDE

systems are their use of a common data structure for

messaging and a manager which can manipulate this structure

- to support the requesting tool. The key advantages observed

were the reduction in the number of interfaces a tool had to

maintain and the adaptability of the system to incorporate

new or modified tools with minimal system disruption.

Summary

- The review of System 690 environment showed it to

consist of two primary tools; the DD editor and an SADT

editor. While both operate well in a stand-alone mode, they

a-- currently have limited or no access to a central database.

Because of the continued work with these tools, the database

schema has been identified for their inclusion in the

central database. The basic problem is how to interface

these tools with the central database.

The review of current literature examined other

environments and research efforts for an insight of how they

addressed problems similar to those of System 690. Their

solution was to implement a data manager which used a

* standard interface for all tools. The tools interfaced only

* with the data manager and did not worry about formatting

- data for another tool's use.

The findings of this review show that this thesis

addresses items which are current, relevant concerns of the

software engineering community. Further, the review iden-

4. 25

1K%

tified many of the requirements of an integrated system and

the role the data manager is to play. These findings will

be beneficial in the following Requirements Analysis

chapter.

I2

J~Z

-. ' III. REQUIREMENTS ANALYSIS

Introduction

The basic objective of this thesis was to provide a

common interface which integrates the tools within System

690, enabling them to use a common database and share data

(Fig 6). A review of the current SEL and research efforts

addressing similar situations showed that a data manager

controlling the database and using a standard data file as

N the interface between the tools and the data manager was a

* valid approach (1, 8, 10, 14). An important component also

identified to support an integrated environment was a means

to provide a database librarian function through session

40 control (2, 11, 12).

This chapter provides an overview of the system's

basic operations and then establishes the requirements of

the standard data file, data manager, and the data manager's

A.- session control mechanism. The requirements of the common

database are also examined.

Before beginning the requirements analysis, several

definitions are needed. A data entity refers to all the

* information describing a data dictionary entry. The data

entity consists of multiple data elements. These data

elements are the values representing specific data fields in

a data dictionary entr3,. A session refers to a tool-data

*. *,*;. manager interaction where data is retrieved from the

27

database, manipulated by the tool, and stored back into the

~ database. A transaction is a request to the data manager to

perform a database retrieval or update.

REUR
-DD

DEIN TNAR AT A

DDDT IL AAER1/8

COD

Figure 6. Goal System Configuration

28

9-W RX0 1 WV - bu- yw vnw-.~ W-fL-

*1

Overview

X The primary requirement of this thesis is to provide a

standard data file and a data manager which can manipulate

the standard data file. These two components must be

adaptable to changes and additions in tool data needs. The

standard data file is the data interface between the SEL

tools and the data manager. The data manager must use and

create the standard data file and provide session control to

meet its requirements. The overall interactions between the

data manager, the tools, and the database are shown in

Figure 7.

AUTHOR: Connally DATE:18/15/87 READER

PROJECT: Bid Data Mgr REV: 1.8 DATE

" Transaction Requst

Standard Data File Standard Data File

Database Manager Transaction-Results

)Seslon Information

'O

'r.'
"

NODE: TITLE: System 698 Data Manager NLIMER:

-IA--

4.

Figure 7. Data Manager SADT Top Level

29

The data manager performs many tasks but its basic

function is to retrieve data from and write data to a common

p database using the standard data file. This is reflected in

Figure 8 which shows the major activities the data manager

must perform and the data it is required to use and gener-

ate. The following sample session is provided to show how

the data manager uses and creates the various data items.

AUTHOR: Connal I y DATE:1G1e5/87 READER
PROJECT: Bid Data MNr REV: 1.9 DATE

ITransaction Request

Database Retrlev Standard Data File________
I a Data Transaction Results

,ession Iniomatton

Standard Data File 2 Utbs

N ODE: TITLE: System 89a Data Manager NqBER:
AS

Figure 8. Data Manager SADT First Level

Sample Session: A user or tool will request a
data entity(s) from the database. On receipt of
the request, the data manager will retrieve the
data and provide this data back to the requestor
in a standard data file. When retrieving the
data, the data manager needs to provide session

, control to maintain database integrity.

30
0

teWhen the desired changes have been made to
tedata, the tool which checked-out the data,

.4. requests to update the database. The data manager
will uce the standard data file, containing any
changesl made by the tool, and the session informa-
tion generated during the retrieval to coordinate
and perform the database updates. After the data
is successfully written back to the database, the
session is terminated.

This sample session shows how a typical session will be

performed. It also indicates the dual role the standard

data file and session information provide. The impact of

this dual usage will become evident in the remainder of this

chapter.

Standard Data File

The standard data file is the means used by the data

manager to transfer data between System 690 tools and the

common database. It provides a standard file structure for

all tools to use in interfacing with the data manager. The

file is the interface and therefore must contain not only

the requested tool data but also provide control information

to the tool by describing the contents of the file.

* The requirements of the standard file are examined with

respect to its two functions: data transfer and file

description. The data format requirements are based on the

* types and structures of the data being transferred. The

file description requirements are based on the information

necessary to inform a tool and the data manager what the

-~ contents and structure of the file are.

31

Data Format. The initial step taken in determining the

data format requirements was to identify the minimum number

of file entries necessary to describe a data element to a

tool. Then, based on an examination of the data dictionary

fields and the relations in the current databases (4, 16),

additional entries were included in the data format.

The absolute minimum information needed in the data

format is the data itself. Without additional information,

the tool would have to depend on positional notation to

process the data. This is not a valid option because the

* number of data elements used in a data dictionary entry

varies from one entry to the next. To avoid this, the name

of the data element must also be included.

The next entry required is the length of the data

element. A data element may be any valid Ingres data value

length, therefore no default value may be assumed. Further-

more, one tool may display an element as an 60 position

field while another uses it as a 40 position field. To

prevent the possible loss or incorrect use of data, the

4 inclusion of an element's length is a minimum requirement.

The minimum entries identified are the name, element

length, and value of a data element. However, these entries

only describe a data element's characteristics, not its

function within a data dictionary entry. To further

identify a data element, its function within a data diction-

ary entry needs to be established. These functions can be

32

broken down into several basic field ty-pes: single-line

fields, multi-line fields, group fields, and multi-line

fields within a group field.

A single-line field is the simplest of the data

structures to be transferred. NAME (Fig. 9) is an

example of such a field. The already identified entries

adequately describe this data field. Therefore, this field

places no additional requirements on the data format.

S. A multi-line field is not as simple. DESCRIPTION (Fig.

9) shows a single data field which may consist of several

* lines in a display. The database tracks such an element by

lines (reference padesc in Fig. 10). To indicate to a tool

it is dealing with this type of data element, a multi-line

indicator is required in the data format entries.

A group field also requires an additional entry in the

data format. The ALIAS field (Fig. 9), with the associated

COMMENT field, is an example of such a field type. The

relationship between these data elements need to be reflec-

ted in the data format file.

The last type of entry, multi-line field within a group

field, is not required by any of the current tools but may

-~ be added by future tools. An example of such a field would

be the COMMENT (Fig. 9) entry being a multi-line field

within an ALIAS entry. The data format would have to be

able to identify this type of element to a tool.

.5 33

The data dictionary field types were used to identify

the above requirements. However, the relations used in the

database create additional requirements. Certain data

dictionary fields use relations where the value of an

element and its use in a data dictionary entry are deter-

mined by other attributes within the relation. Examples of

this type of data dictionary field are the INPUT DATA, INPUT

FLAG, OUTPUT DATA, and OUTPUT FLAG fields (Fig. 9). The

relation attribute (paname) is the same for each entry and

is stored in the processio relation (Fig 10). Since all

* four fields use the same data value, some means to identify

the differences is required. The differences are shown in

~VE NAME: (or? process)
PROJECTr: (project name)
TYPE: PROCESS
NUMBER: (node number of this process)
DESCRIPTION: (Multiple lines allowed)
INPUT DATA: (Multiple lines allowed)
INPUT FLAGS: (Multiple lines allowed)
OUTPUT DATA: (Multiple lines allowed)
OUTPUT FLAGS: (Multiple lines allowed)
ALIAS: (Multiple entries allowed)

COMMENT: (Why this alias is needed)
CALLING PROCESSES: (Multiple lines allowed)
PROCESSES CALLED: (Multiple lines allowed)

-. ALGORITHM: (Multiple lines allowed)
% REFERENCE: (Multiple entries allowed)

.5 REFERENCE TYPE: (SADT, text, etc. for this reference)
VERSION: (Version of this data dictionary entry)

4 VERSION CHANGES: (What was changed from the last version)
DATE: (Of this data dictionary entry)
AUTHOR: (Of this data dictionary entry)

Figure 9. Process Data Dictionary Entry (5: 26)

34

the direction (IN/OUT) and type (FLAG/DATA) attributes in

the processio relation (Fig. 10). A similar method is

required to uniquely identify the data values in the

standard file.

process prdesc

project c12 project c12
prname c25 prname c25
number c20 line i2
status cl description c60

processio pralias
project c12 project c12
prname c25 prname c25

* paname c25 aliasname c25
direction c4 comment c60
type c4

pralg prcall
project c12 project c12
prname c25 prcalling c25
line i2 prcalled c25
algorithm c60

prhistory prreference
project c12 project c12
prname c25 prname c25
version cdo reference c60
date c8 reftype c25
author c20 comment c60

Figure 10. Process Database Relations (4: 36).

The combina'ion of the initially identified require-

ments, the data dictionary field types, and database storage

mechanisms have produced the following minimum entries to

* Uidentify each data element in the standard file:

'-'" 1) Name

35

0W.t

2) Length

3) Contents

4) Multi-line

5) Multi-field

6) Direction

7) Type

File Description. The requirements for the contents of

the file description header are based on the need to

describe the structure of the data elements to both the

tools and the data manager and provide control information

* to them. The data in the file will need an identifier which

indicates the type of transaction which generated the file.

To prevent a tool from trying to use data structured for

another tool, a means must be provided to insure the data

contained in the file is compatible with the tool. A method

to show the type and amount of data contained in the file is

also needed to describe the total contents of the file to

the tool and data manager. The final requirement is a

provision for a means to track tool usage data for use in

analyzing usage patterns and tool performance.

The identification entry indicates whether the standard

data file was generated by a tool or the data manager. A

file created by a tool would be used by the data manager to

update the database with new data. A file generated by the

data manager would be used by a tool to manipulate retrieved

data. This file needs a session identifier associated with

36

it which identifies the contents as being checked-out. The

data manager will need this identifier to check the file

back in. Because the identifier must be unique to identify

each checked-out file, the tools will need to maintain this

identifier throughout a session.

A tool identifier must be associated with a file to

insure that the tool accessing the file is compatible with

the data it contains. A basic requirement of this informa-

tion is a header entry which uniquely identifies the tool

for which the file was generated.

The data description requirements fall into three basic

-~ categories: indication of the project name, the phase and

type of the data entities contained, and a list of all the

data entities in the file.

The project name of entities contained in the standard

data file is included in the file description header because

of its importance in identifying a data entity. Project

serves as part of the key of every data dictionary relation.

The addition of the project name provides a more complete

* description of the standard data file's data entities.

The phase and type information is required for those

tools which can manipulate data entities in more than one

0 phase of the software life cycle and/or use data that can be

either object or action entities. The phases and data types

-, refer to the phases of the software life cycle and the data

types which occur within each phase. The data manager is

37

required to support three of the life cycle's phases:

requirements, design, and implementation. Each phase uses

activity and data entities to describe the software system

within the phase. The requirements phase's data ty-pes are

activity and data item. The design phase's data types are

process and parameter. The implementation phases's data

ty-pes are module and variable. For a complete discussion of

the phases and data items used in the SEL, refer to the

Software Development Documentation Guidelines and Standards

(5). For the remainder of the thesis, phase will refer to

* the requirements, design, and implementation phases. Action

1 entities will refer to the activity, process, and module

entities. Object entities will refer to the data item,

~5e parameter, and variable entities.

The DD editor is an example of a tool which uses a wide

range of data ty-pes. It can edit data in all three phases

and uses both object and action entities. Without both

phase and type information, the data is not adequately

described.

1 A summary of the data entities is necessary for those

tools which access multiple data entities within a session.

The SADT editor is an example of a tool which uses both

action and object entities within a single session.

Therefore, a method to identify the name of an entity and

whether it is an action or object entity is needed. The

38

number of entities is also required to support any tools

which dynamically allocate memory for their workspace.

5. An entry is also required which indicates if a data

entity is in a read or write status. This provides the tool

and data manager information which allows them to implement

some type of update control or to highlight data it does not

have permission to update. This feature is necessary to

inform the user that he is attempting to update data he does

not have the privilege to modify.

The final requirement of the file description informa-

0 tion is for it to be able to track tool usage. A tool usage

monitor is available which measures the time a user spends

within a session. The monitor requires the start and stop

date and time for each session. Entries to contain these

times must be included in the file description header..5"

The evaluation of the file description header has

produced the following requirements:

1) Session Identification

2) Tool/File Compatibility Header

3) Project

4) Phase

5) Type

6) Data Entity Summary

a) Entity Name

b) Action/Object Type

c) Read/Write Status

39

.-
p

7) Start/Stop Time Entries

Data Manager

The data manager's requirements cover a broad range of

functions. The data manager's primary functions are to

retrieve data from and write data to the database. The data

manager must also provide an interface which allows tools

and users to specify the transactions to be performed. The

data manager must generate and use the standard data file.

It also needs to support some type of session control to

protect database integrity.

Tool/User Interface. The tool/user interface is

provided to allow a tool/user to specify to the data manager

the type of transaction to perform and provide the tool/user

the transaction's results. The interface must support both

interactive and batch requests. This requirement provides

greater flexibility for smart tools that can build batch

requests without the user having to interface directly with

the data manager (Fig. 11). The interactive interface (Fig.

12) is available for use with tools that do not have the

sophistication to perform a batch transaction.

The tool/user interface needs to generate a transaction

S. containing sufficient information for the data manager to

perform both database retrievals and updates. The transac-

tion contains two ty-pes of control entries: common and type

specific. Common entries are those which are used in all

data manager requests. The specific entries are determined

40

.User

Interface

1 ~ ~Transaction. "

""Tool RqeDaaCommon
:-: Manager

Tool

Figure 11. Batch Data Manager Interface

i In Tool Transaction

a a

Tool Trosacio

File Manager

-'i

Databas

: ' '"Figure 12. Interactive Data Manager Interface

r4

-. by the type of request. The entries contained in a transac-

tion request are discussed in terms of being in a file with

the understanding that an interactive menu could provide the

same type of information.

The common entries are those which identify the

requesting tool, database name, standard data file name,

type of transaction, requesting user, phase and type of

data, and project name. The entries for an update request

correspond to the common entries. The retrieval request

requires additional entries to identify the data entity(s)

to be retrieved.

The tool requesting a database transaction must be

identified. As part of this identification, the phase and

type of data is also needed. The phase entry is necessary

to support multi-phase tools, such as the Data Dictionary

editor. The type entry is needed to identify whether the

tool uses action, object, or both types of data entities

within a phase. This requirement is necessary because of

tools which can use one or more types of data within a

•_ session (ie. activity and data item).

The database name is required to support the existence

of multiple databases. This would allow for the databases

to be separated for use on different computers or to isolate

the data of a particular user or group. The only require-

.ment for separating the databases is that each database

contain both action and object entities within a phase. If

42

4
I; 4. . .. * '.2

the databases are on separate systems, the user will be

responsible for directing the transfer of transaction

requests and tool files to the appropriate system.

The transaction indicator is needed by the data manager

to control its actions. The basic types of transactions are

retrievals and updates. A retrieval transaction will

generate a standard data file and an update transaction uses

the standard data file to perform database updates. Because

the standard data file is used with both transaction types,

the file name must be included in the transaction.

The identification of the requesting user is required

for data access control. For retrieval requests, only the

owner of a data item is allowed to retrieve it for modifica-

tion, but all users may read the data. For database update

requests, the user must be identified for the data manager

to determine if the data can be updated by that user, and if

not, prevent the user from modifying the data.

The final entry shared by both update and retrieval

requests is the project name. Project name is part of the

key for every relation in the database and must be provided.

The remaining entries are for use in retrieval request.

These entries identify the data items to retrieved. The

means to identify the required data items needs to be as

* flexible as possible. There are two ways to request the

* data. The most common is by explicitly listing all the data

*names. The second would be to identify a parent data entity

43

WW"I""T...

and return the data associated with this specific entity by

levels of detail.

The ability to explicitly list the data entities needed

is beneficial for tools which can only work with one entity

at a time or with disjoint sets of data. However, the

capability is also needed to list multiple entity names for

those tools which can manipulate multiple entities within a

session. As part of identifying the entity, the ty-pe

(action or object) is required. This is necessary because

of tools which simultaneously use both action and object

entities.

The ability to retrieve subordinate data based on a

high-level (parent) entity is required for tools such as the

SADT editor. The SADT editor uses multiple action and

object items during one session. It would be very difficult

for the user to remember all the data entities associated

with a session, but the user would know the parent name of

the session's entities. Allowing the user to specify just

the parent greatly eases the tool user's burden and reduces

the possibility of errors created by including or omitting

data entities.

An additional requirement exists for the capability to

explicitly indicate the number of levels to be retrieved.

This entry would be used in conjunction with the parent

entry. This requirement exists for tools which can manipu-

-. late multiple levels of data.

44

The user interface requirements are that it allow both

batch and interactive access and provide the following

information to a tool:

1) Tool Identification

2) Database Name

3) Phase and Type of Data

4) Transaction Type

5) Standard Data File Name

6) User Identification

7) Project Name

*8) Data Entity and Type

9) Parent Name

10) Number of Levels

0 The data manager-needs to provide a tool/user the

* results of a transaction. The results need to reflect

.r. either the success or failure of the transaction and, in

case of failure, identify the cause of the failure. Because

the data manager supports both interactive and batch users,

the results must be capable of being displayed to a screen

during an interactive transaction or to a file during a

batch transaction.

Data Retrieval. A primary requirement of the data

manager is for it to retrieve data entities from a database

.r~. for use by any tool using that database. The data manager

must be capable of retrieving single or multiple data

~. ~.entities which are action and/or object entity types and,

-p.' 45

most importantly, do so in a generic manner. Another

important component of the data retrieval function is the

support of session control.

To retrieve data entities from the database, certain

key fields must be provided to the tool. These fields are

project name, data name(s) or parent name and level, phase,

and type. These entries uniquely identify the relations

which are required to build a data dictionary entry.

However, various tools may have different data requirements

even within the same phase and type. To address this, some

* means must be provided to identify the necessary data

elements to be written to the standard file, and the order

in which these fields are to be stored. Whatever means is

~1@ used, it must be generic so that common code can be used to

retrieve the data for multiple tools rather than using tool

specific code.

The means chosen to implement a generic retrieval must

be flexible enough to handle any changes to current tools

and the addition of new tools. This is an extremely

important requirement because without it, modifying the data

manager to incorporate tool changes could become too

difficult.

As part of the generic retrieval method, the ability to

retrieve multiple levels of information needs to be incor-

porated. The user should only be required to provide a key

46

*%

data name identifying the top-level value from which the

data entities are to be retrieved.

As part of the retrieval, a session control file needs

to be established which tracks the data entities selected.

This session control file must be assigned a unique iden-

tifier which insures no other tool could inadvertently

destroy a session which it did not own. The session control

file needs to identify the data entities used and their

update status. The update status can be set to read or

write if the entity's owner checks it out, otherwise only

4 read permission is granted.

The session control file must also maintain other

information. It must track what tool is using a particular

session and the name of the session owner. This information

identifies who has checked-out a particular data entity(s).

This capability is necessary so that a user could be asked

to check-in his session data for use by another tool or

user.

Throughout the retrieval process, errors may occur.

Any errors are to be reported to the user with a brief

problem description. If a data item can be identified as

the problem, its name is included in the error message. if

a data entity in a multiple entity retrieval causes an

error, it will be identified and the other entities are

transferred.

47

C C- A capability which may be needed by future tools is the

ability to retrieve different versions of the same data

entity. Currently, the database does not support the

storage of multiple versions. Adding this capability is

beyond the scope of this thesis, but the retrieval method-

ology needs to be developed to support this requirement.

Database Update. The requirements for the data man-

ager' s database update function are very similar to those of

the data retrieval function. It, too, must provide a

generic means to update the database, validate update

* request, and insure database consistency through session

control.

To support the generic data description of a standard

data file, a common representation, describing both update

'N and retrieval formats, needs to be developed. This common

data description would reduce the overhead of having

separate files for updates and retrievals and prevent the

p. problem of making a change in one file and not the other.

These files should be developed so that the update code,

like the retrieval code, can be common for all tools.

A requirement of the update function is to validate all

data files submitted for updating the database. There are

two types of updates received. One type is where the file

has just been created by the tool with no existing session

control file. The other type is the normal update where a

.~ -: ~ session control file is available.

48

An update created by the tool should contain only new

~ data entities. The entities are checked for completeness

and use of unique data names. Three fields are required for

any new data entity entry: project, name, and author. The

project name is supplied by the user interface file. Name

must be supplied by the user because it is part of the key

for every relation in the database. Author is required to

show entity ownership because only owners are allowed to

* modify an entity.

A regular update request uses the standard data file

0 and the session control file created during the retrieval

transaction. The session control file contains the status

of each entity and validates whether the user owns the

0 records he wishes to add, delete, or modify. If a tool

cannot show an entity's update status, the session control

file is used to direct the database updates. New entities

are added. All entities in a write status are updated.

Entities which were not included in the return file but were

sent to the tool are retained in the database. Only

explicitly identified entities are deleted.

The manipulation of data by various tools and the

transmission of data files by data lines introduce the

possibility for corrupted or invalid data to be submitted

for update. The data manager must be able to detect and

.1. recover from such an occurrence. This requirement is

~ limited to invalid data. It does not require the data

44

A49

manager to perform consistency checking between entities.

~' ~'This is beyond the scope of this thesis and should be

implemented via an external utility.

If an error is detected in an update transaction, the

user must be informed as to what caused the error. If any

entity within a session cannot be written to the database,

the update is aborted and the database is restored to the

state it was in before the update began. This is necessary

to reduce the introduction of data inconsistencies into the

database.

Common Database

There are only two requirements for the common data-

base. The first requirement is for the relations developed

by Thomas (16) to be modified to reflect the additional

refinements made by Foley (4). The second requirement is

for a means to indicate the read/write status of individual

tuples within key relations. This requirement provides

support of the session control file and adds additional

information about the tuples for any non-data manager

transactions.

Summary

* This chapter has identified the requirements for

integrating System 690 tools. The primary components are a

4"' standard data file and the data manager. The main require-

ments to be met are for the system to require minimal user

50

N input, provide basic data protection, and be adaptable to

change.

Adaptability is the key requirement. The standard file

* :.,must be able to pass data to any tool in System 690. The

format used must support new tools and changes to old ones.

The data manager's retrieval and update functions must

provide the same leve. of adaptability, but do so in a

generic manner. As new tools are added and tool changes

occur, the data description method and developed code must

- adapt without significant effort. Adaptability will be the

* driving requirement in the following design and implementa-

tion efforts.

.J51

SV

IV. System Design

Introduction

The purpose of this chapter is to establish the high-

level design based on the common database interface require-

ments. Chapter III identified the required components and

functions which needed to be developed to provide the

database interface. The system design addresses the overall

structure of the interface and how its components interact.

The design selected is not the only one available but it

does meet all requirements. As part of the design, the

system's transaction processing methodology must also be

established.

System Structure

The system structure is based upon the components

identified in the requirements. These components are the

data manager, standard data file, and common database. This

section examines each of these components based on their

function in the system and on their inter-relationships to

produce the overall structure shown in Figure 13.

Data Manager. The data manager's requirements are

extensive. It must provide a generic means to perform data

9 retrievals from and updates to a common database using the

standard data file. It must support both batch and inter-

active tool transaction requests. Additional functions the

data manager must perform are session control and error

52

'a

.5
Tool Data

Definition
- Tables

-------- ONSession

aDa

Req es Sesio
a,.

U E

N

r e sScreen File

~53

*'Owl

a-
igr 13 Oerl Sytm tu Trn

. 5T

ol.a

S. -5--,
a- .5 . I Sjin r n'

." R e" . *% -

M'MT TM.

recovery. These functions establish the bulk of the

system's structure.

The design of the generic database access is the key to

the success of the data manager meeting the adaptability

* * requirements. The method selected to support this require-

ment was a tool data definition table (Ingres relation).

The definition table contains sufficient information to

retrieve the data from the database, build the standard data

file, and perform database updates using the standard data

file. The data definition table can be adapted to support

any tool and can be easily modified. Additional tables are

used to describe the various tools and any unique processing

needs a tool may have.

The tool-data manager interface is required to support

both interactive and batch transaction requests. The method

selected to support this requirement is the use of a Request

* File which contains the appropriate data manager instruction

parameters. In the ideal case, this file would be generated

p by the tool without the user having to interact with the

data manager, but this is not always possible. The current

System 690 tools cannot support this, hence the need for an

* interactive interface as well. This interface will build

the Request File interactively, so the data manager only has

to support the file interface. An important part of this

interface is the reporting of the results of any transaction

request. The data manager provides the results to batch

54

0W'

transactions via a request Results File. Interactive

transaction results would be displayed to the screen.

The session control function is dictated by the

requirement to control access to the data. The control

function occurs in two parts. At its basic level, session

control must prevent the inadvertent modification of any

data entities by any user other than its owner. The second

part of session control is identifying and tracking data

* entities which have been "checked-out" of the database for

modification and supporting the data manager's update

function when the entities are "checked-in" to the database.

The use of Session Control tables (Ingres relations) was

~* selected to support this function. As part of the session

control function, a back-up copy of the generated standard

file is generated. This file is to be used by the error

recovery routines to restore the database in case of severe

errors when the data is checked-in.

The final required function is error recovery. The

data manager maintains simple database consistency by not

allowing incomplete or incorrect updates. In the case of an

error, the data manager is required to restore the database

back to its state prior to the transaction. Error recovery

during a retrieval would be minimal because the contents of

the database have not been altered, but update errors

require more extensive procedures. To recover from such an

update error, the back-up session file is used to restore

55

.K~-.the database because it contains the structure of all the

affected entities prior to the update.

Standard Data File. The standard data file is the data

interface between the tools and the data manager. Its

contents are dictated by the requirements. Every standard

data file contains a file description header and the actual

data entities. Note, however, that only the structure of

the file remains constant. The actual contents of the data

elements and their order varies from tool-to-tool and phase-

to-phase. The data manager maintains the element's order

and contents using the tool data definition tables.

Common Database. The common database is not affected

in the design process except to support the addition of the

data manager tool data definition tables and session control

tables.

Transaction Processing

The system provides a common database interface. As

such, the transactions that are processed will involve

* either the retrieval of or the update of data. Within the

two transactions, there are four basic types: retrieval

only, new write, retrieval for update, and write with

update. The first two types are performed individually, but

the last two are combined to form a session. This section

examines each transaction type and their design considera-

tions.

'56

Retrieval. A retrieval is a read only action where any

user may retrieve a data entity. The entity is not included

in any session control relations because the entity may not

* be updated via a retrieve only transaction.

New Write. A new write is the result of a tool

generating one or mare new data entities to be written to

the database. These new entities are in a standard data

file which the data manager uses to perform the updates.

- Upon receiving a new write request, the data manager will

need to check that none of the entities in the file current-

ly exist. This is to prevent the accidental corruption of

- existing data.

Session. A session is the most comprehensive trans-

action the data manager must support. Each session consists

of three steps: retrieval for update, tool manipulation of

* the data, and write with update. The retrieval for update

9. retrieves the requested data entities into a standard data

file (session file) which the tool uses to manipulate and

modify the data entities. After completing its modifica-

* tions, the tool submits the standard data file to the data

* manager for writing. The data manager monitors each session

using the session control files to track the entities which

were checked-out and the user's name. When the session file

- is resubmitted for write update, the data manager needs to

check for any invalid updates. If none occur, the session

* is terminated and the data entities are checked-in. If an

57

- - error is encountered, any updates made by the session file

are removed and the session back-up file would be used to

recover the database.

Summary

The purpose of the system design was to provide the

basis for the detailed design specifications for a common

database interface. As shown in Figure 13, the key comn-

-/ ponents are the tools, data manager, standard data file, and

central database.

The importance of the detailed design is to not just

show the components, but to identify how they interface.

Also shown are the work files and relations used by the data

manager in supporting the generic database interface,

session control, tool interface, and error recovery. The

detailed design of these components, files, and relations

are provided in Chapter V.

58

'. 0I

V. Detailed Design

Introduction

The purpose of this chapter is to provide a detailed

design of the components specified in the system design

chapter. The major components identified were the standard

data file, data manager, and common database. Within the

data manager requirements, four key sub-components were

identified. The first was a generic tool data definition

table. The second data manager component was the tool/user

interface. The third was a means to support session

control. The last component was a means to recover from

errors. The design of each of these components and sub-

components is presented in this chapter.

Standard Data File

The standard data file serves as the primary interface

between System 690 tools and the data manager. The require-

ments of this file indicated that it should consist of a

file description header and a set of formatted data entries

containing the required data elements. This section

examines the design of these two components and their

* overall structure.

File Description Header. The required contents of the

file description header were identified as the following:

session identification, tool/file compatibility header,

project, phase, type, data entity summary, and start/stop

59

time entries. These required fields were combined to

produce the file description header (Fig. 14) used in the

standard data file.

SESSION ID

TOOL ID

PROJECT

PHASE

TYPE

STAT IM

START TIME

LIST OF ENTITIES:
Name Type Status

Name Tyrpe Status

Figure 14. File Description Header Format

'5;

The requirement that the standard file be used by both

. 0 tools and the data manager places certain demands on the

design and use of the header fields. The general issues are

addressed below with the detailed field formats being

discussed in Appendix B.

Session Identification. The session identifica-

tion contains either the session identifier assigned by the

data manager at the beginning of a session (retrieval for

60

update) or a standard entry indicating the file was built by

the tool. The identifier assigned by the data manager is

used to control database updates and must be unique for each

session file to prevent using the wrong session control

information in controlling a write with update request.

Because of this, the tool must maintain this identifier for

later submittal for database updates. The standard entry is

used when the data file has been created by the tool to

enter new data into the database. The standard data entry

is constant for all tools and the data manager will expect

* this entry for new writes. Without a valid session iden-

tifier, assigned or standard, the data file will be rejected.

Tool Identification. The tool identification code

is needed by both the SEL tools and the data manager. A

tool can use the tool code to verify the file contains data

properly formatted for its use. The data manager uses the

tool code to help determine the format of the data entities

within the standard data file.

Phase Indicator. The phase indicator will contain

only one phase. This method was selected even though some

tools may require data from more than one phase. The single

phase per data file allows the different phases to be

contained in separate databases residing on different

systems. The data manager cannot manipulate data across

systems in a single session. For this reason, a separate

*.-~ data request must be made for each phase.

61

0',

~~*% .*

~ -N Type Indicator. The type indicator designates

whether the data entries in the file are action, object, or

both types of data entity. Since all can be handled, this

is needed only to allow more efficient operation of the data

manager.

Start/Stop Times. These times are initialized by

F the data manager but the tool provides the actual values.

The start and stop times represent the total time used by a

tool during one session. Tbe method used to generate the

entries are tool specific to allow for the most accurate

* representation of a tool's specific usage patterns.

Data Entity Summary. The data entity summary can

consist of multiple entries. Each entry contains the name,

- type, and status of each data entity contained in the

standard data file. The entities are ordered by type with

all action entities occurring first, followed by the object

entities. Tbis grouping was selected to ease file handling

by presenting a consistent ordering.

The status entry indicates the status of each entity in

the standard data file. The acceptable statuses are read,

write, and delete. The status of an entity is determined by

its intended use and whether it is in a standard data file

generated by a tool or the data manager.

A read status occurs only in standard data files

generated by the data manager. This status is used when a

, requested entity cannot be updated in this session.

62

A write status can occur in either a tool-generated

standard data file or in one generated by the data manager.

All entities in a tool-generated file are in a write status

because all the file entities are supposed to be new. There

is no need for any other status in a new write. In a

standard data file generated by the data manager, the write

status indicates to the tool that the data entity can be

modified.

The delete status occurs only standard data files

generated by the data manager and modified by a tool. The

* delete status allows a tool to delete entities during a

session.

Because some tools may not have the sophistication to

indicate the status of an entity, the data manager assumes,

on new updates, that every entity in the file is submitted

in a write status. If the file was checked-out, the ap-

propriate session control files are used to control the

- updates when the standard data file is checked-in.

Data File Entries. The data portion of the standard

data file consists of one or more data entity entries. Each

entry is composed of all the data elements necessary to

satisfy a data dictionary entry. The data elements are

contained in a series of data records (Fig. 15) and consist

of the fields identified in the requirements. The file

contains the data elements for all entities identified in

~ the file description header entity list, except for those in

63

a delete status. The ent-;,ties marked for deletion do not

have a corresponding set of data records in the standard

data file. The general design issues for the data entries

and the overall entity structure are discussed, while the

detailed field formats are addressed in Appendix B.

Data Name. The data name corresponds to the data

element's attribute name. A tool returning this record must

have this name correct or the data manager will reject the

entity.

DATANAME

FIELD LENGTH

MULTI-LINE INDICATOR

.4 NUMBER OF FIELDS

DIRECTION

TYPE

CONTENTS

Figure 15. Data Element Record Format

Field Length. The field length entry contains the

* data element's maximum Ingres field length. The require-

ments indicated the need for this to inform a tool the

content's length to allow tools with varying field length

support to manipulate the entries.

66

Multi-line Indicator. This field contains either

a Y or N to indicate that the data element is part of a

multi-line field.

Number of Fields Indicator. This field contains

the sequentia'l identification number of single-line fields

occurring within a group field. The numbers are in descend-

% ing order to allow a tool to know how many fields to expect.

Direction and Type Indicators. These indicators

correspond to the direction and type attributes of certain

data elements. These fields are required to form the data

U- element's key. Because of this, the tool submitting the

file must provide the proper values in these fields. In

entries where these fields are not needed for database

access, the field, while present, is ignored.

* Data Contents. The data contents field contains

the data element value. The field may contain up to 60

characters. This limit was selected because of the Data

Dictionary Editor. The editor is the most heavily used tool

and cannot manipulate fields longer than 60 characters (16:

57).

Entity Structure. The data element records within

an entity have a specific order. The first element record

in an entity is the entity's name. The name occurring first

was selected because it is standard for all data dictionary

entries and it provides a quick means to identify the entity

name of the data elements. The order of the remaining data

65

01 N

e lements is dictated by the tool's requirements. The

ordeingis controlled by the tool data definition table.

Th order of the data element records must be main-

tained upon submittal for updates. The data manager expects

the data elements to be present and in a specified order,

- including empty contents fields. If a data element is not

present the file is rejected. The purpose of this is to

prevent posting any incomplete entities to the database.

Data File Structure. The standard data file structure

-~ (Fig. 16) is built using the file description header and
-p

* data entity entries. The file contains all ASCII characters

and consists of the file description header, data entities,

- - and section delimiters. The delimiters are unique for each

section and are designed to help the tools and data manager

maintain their position in the file. The delimiters also

help tool developers read the file's contents for debugging

purposes.

Data Manager

* The data manager is the key to providing an integrated

environment within the Software Engineering Laboratory. The

primary components of the data manager are the tool data

* definition table and the tool description table. These

tables permit the generic classification of the entities

used by the tool. These tables are used to support the data

manager's two primary functions which are to perform the

database retrievals necessary to generate the standard data

66

#@@BEGIN@O#
#@#HEADER BEGIN#@#

<file description header, Fig. 14>

#*HEADER END$@#
M#ACTION TYPE*#

S@##START##@

<entity element record, Fig. 15>

@##STOP##@

0

0

0

* #*#ACTION END##

-6 ###OBJECT TYPE###

0##START##@

(entity element record, Fig. 15)

@##STOP##@

0

0

##OBJECT END###
~#@@END*@#

..

Figure 16. Standard Data File Format

file and to use the standard data file to perform database

updates. A tool/user interface is also required to control

i the actions of the data manager. The design of the tool

- -. : data definition table and the tool description table are

V 67

S%

"'S.

"l +': } + .+ +. " .,+,,,,".+'+ ,+ v.,. "," ,," ,-, - ,.,+ " +.".""S." '

.\.J : examined first. The three data manager functions are then

discussed. For additional details concerning the data

* manager and its interface, reference the User Manual in

Appendix C.

Tool Data Definition Table. The data manager require-

ments identified the need for a means to support the

retrieval of data dictionary entries, formatting the

retrieved data into the standard file format, and updating

the database. The method selected was also required to be

flexible in design to incorporate current and future tool

* data requirements with little or no programming. These

requirements provided the basis for the following design of

* the tool data definition table. For detailed field formats

-~ and values, refer to Appendix C.

Table Usage. A tool data definition table

contains the information necessary to describe a single data

entity type to the data manager. The table is tool, phase,

and type specific. Therefore, a tool using both action and

object entities within a phase requires two data definition

tables, each with unique relation names, to describe its

data entity formats.

Table Format. The primary issue in designing the
0.

data definition table (Fig. 17) was supporting the data

manager's database transactions. The table had to provide

sufficient information to access a data element. The

minimum information required is the following: data element

68

.. . * ..

. -name, element's relation name, relation's key names, and the

entry classification of the element's relation. Each of

these items require one or more entries in the table and are

" discussed below.

The data name, relation, and key fields each contain

the appropriate Ingres value needed to access a single data

element. Data name also corresponds to the data name entry

in the standard file data record. Relation is the name of

the relation containing the data element. The key fields

DATANAME RELATION KEYFIELD_1 KEYFIELD_2

FIELDDESCRIPTION ENTRYCLASS MIJLTI_LINEINDICATOR

NUMBEROF_FIELDS DIRECTION TYPE

1rl

%/ DELETEFLAG VERSION LINE
-

Figure 17. Tool Data Definition Table

are the attribute names used in a relation as keys. For all0

current tools, only the first key field is used, but a

second key field was provided to support future tools which

may require it.

69S.6

The data definition table entries just identified

supply only a portion of the information required for data

* retrieval and update. Information describing the data's

* relation structure is needed to perform accurate and

efficient database transactions. The entry class field

performs this function. By classifying a data element's

relation, the data manager can perform its database accesses

according to class, eliminating special coding for each data

element. The use of entry classes is the key feature of the

data definition relation. The relations used in the various

* data dictionary entries fall into general classes. By

classifying a relation by its structure and not specific

* code values, the amount of code required to read and write

information is greatly reduced. Furthermore, new relations

can be added to the database by either creating a new class

-. or by using an existing class. This flexibility provides

the generic capabilities identified in the requirements.

The direction and type fields are used to aid the data

manager in accessing data elements whose usage is determined
4

by its direction and/or type attributes. The paname data

element, contained in the processio relation (reference

Appendix A), is an example of such an element. The direc-
4

tion and type field values are used for database transac-

tions and in the direction and ty-pe fields contained in the

standard file data elements.

70

% . --. o X "A

-...

The delete flag indicates which relation names and key

fields to use in deleting the elements associated with a

data entity. Only a limited number of the table entries

have to be marked for deletion because several table entries

may correspond to a single relation (ie. ALIASNAME, COMMENT,

and WHEREUSED in the paalias relation). This grouping uses

the same relation and key field names for a deletion. Using

the Ingres delete command will remove all associated tuples.

Another reason this method was selected is certain entries

in the data definition table are not a member of the

* entity's type class but are needed to provide a complete

data dictionary entry. An example of this are the SOURCES

and DESTINATIONS entries in a data item data dictionary

entry. These fields are part of the activity entity and

cannot be deleted by a data item transaction. By marking

these entities as non-delete entries, the elements may be

used in both types of dictionary entry.

The version field is used in accessing data elements

which have multiple versions. The entry contains the

attribute name used in a tuple to identify the version of

its contents.

The number of fields entry indicates how many elements

are to be retrieved from a single tuple. This entry allows

the data manager to access all the data elements in a

.'. relation with only one transaction versus one for each data

71

element. The number of fields is also used in the standard

4 file data record.

The field description and multi-line indicator are

provided to support the generation of the standard file data

records. Certain tools (i.e. Data Dictionary Editor)

require these indicators to structure the display format of

the element.

Element Entry Order. The order in which the

~ various data elements are written to the standard data file

is based on their order of entry within the tool data

* definition table. The data definition table allows the

4"' elements in a relation to be split in the standard data

file. To support this, the data manager will have to

I perform multiple retrievals of the same relation to get all

the required data elements. This introduces inefficiencies

into the data manager but eliminates the requirement of a

tool needing to know the structure of the database.

Tool Description Table. The tool description table

(Fig. 18) describes a tool and its data needs to the data

* . manager. The description table is used by the data manager

* for transaction request verification and database retrievals

and updates. There is a tool description table entry

identifying the tool data definition table for each phase

and type of data entity used by a tool. This is required

-~ because a data definition table only describes a single data

dictionary entry.

B 72

TOOLNAME PHASE TYE DEFINITIONTABLE DESCRIPTION

Figure 18. Tool Description Table

The tool name contains a code which uniquely identifies

a tool. The same code will be used for multi-phase tools to

prevent having the tool submit a different code for each

phase it uses. The tool name, phase, and type fields are

used to identify the specific data used by the tool. The

definition table field provides the data manager the Ingres

relation name identifying the appropriate data definition

table(s) to use in retrieving a tool's data entities. The

description field provides a means to better identify a tool

4--. and its use and is for documentation purposes only.

Tool/User Interface. The tool/user interface provides

the means for tools or users to perform database transac-

4.tions. The design of the interface addresses the format of

a tool data request, the types of interface options to be

* made available, and error reporting procedures.

Tool Data Request. The requirements for the tool

data request contents were established in Chapter Three.

0. These requirements helped determine the tool data request

* format (Fig. 19). The entry requiring further clarification

is the transaction indicator.

The transaction indicator informs the data manager of

the types of actions it is to take. The system design

73

TOOL IDENTIFICATION

DATABASE NAME

PHASE

TYPE

PROJECT NAME

FILE NAME

OWNER NAME

TRANSACTION IND ICATOR

SESSION IDENTIFIER

PARENT

LEVELS

LIST OF ENTITIES:

A.Name Type
0 0

0 0

~ A* Figure 19. Tool Data Request Format

identified four types of transactions: retrieve only, new

write, retrieve for update, and write with update. These

four transactions perform all the required transactions but

two other transactions were identified which would improve

the data manager's "user-friendliness".

The first transaction added is the delete function.

~ ~. This allows a tool/user to provide the data manager a list

74

of entities to be deleted without having to retrieve them

for update, changing their status to delete, and resubmit-

ting them for write with update.

The second transaction added is a session abort

function. This was added to allow a user to abort a session

without submitting the session file. This transaction was

added for two reasons. The first was to support easy

database maintenance by providing the database administrator

a means to delete old sessions. The second reason was to

allow a user to delete a session in case the session file is

* corrupted or lost. As part of this transaction, the session

identifier is required to identify the appropriate session.

Interface Design. The data manager is required to

provide a user the option of using either an interactive or

batch interface. The interactive interface will provide the

user a series of menus to build a transaction request file

(Fig. 19). The batch interface is provided to support tool

generated transaction requests. The batch request and the

interactive request files both have the same format.

A design decision was made to implement the interactive

interface in a separate program. This design allows the

data manager to process interactive and batch transactions

the same way. This common interface simplifies the data

manager design by eliminating interaction with the user

during transaction processing.

* 75

W Pr N -

,...,*Results Reporting. All transaction results are

reported through the use of a results file. The results

file name consists of the transaction request file name with

a .res extension. The results file will contain the list of

successfully performed transactions. In the case of an

error, the cause and error recovery results are placed in

the results file. The exception to this is during interac-

tive processing when the results are displayed directly to

the screen.

Data Manager Retrieval Function. The data manager

performs all the data retrievals required by a tool. To

perform these retrievals, the data manager must validate the

request, provide session control, identify the data entities

to be retrieved, retrieve the data, and generate the

standard file. Each of these functions is an important

design concern.

Request Validation. Request validation occurs in

two steps. The first step is checking the validity of the

transaction request (Fig. 19). The second step is determin-

ing if the requested data entities exist.

The required transaction request entries are dependent

on the type of transaction being performed. The entries

required for any transaction are the tool identification,

database name, and owner name. The other entries are

j If transaction dependent.

76

II

-N; The retrieval entries are the session file name,

project name, phase and type of data, and the entities to be

retrieved. The write transaction has the same required

fields but does not list the entities because the entity

list is contained in the standard data file header. A

delete transaction uses the same entries as a retrieval

request. A session abort transaction only requires the

session identifier.

The transaction entry validation checks are limited.

The tool identification, phase, and type are checked against

I the tool description table for accuracy. The other fields

are checked for their presence. Any errors encountered in

the validation generate an error message and cause the data

manager to terminate. If no errors are encountered, the

existence of data entities identified for retrieval or

deletion is checked. For other transactions, the data

manager by-passes the existence check and begins processing.

The data existence verification insures at least one of

the requested data entities exists. The transaction may

either identify the data using the parent and level fields

* or the data entity list. These are mutually-exclusive

entries. If a multi-level retrieval is requested, both the

parent and level fields must be present. If the multi-level

fields are not used, the data entity list must contain at

least one entry. If these conditions are not met, the

N, 77

~ request is rejected. Otherwise, the presence of the

requested entities is checked.

The data existence verification insures at least one of

the requested data entities exists. A multi-level retrieval

uses the multi-level transaction table (Fig. 20). The tool

name, phase, and type fields correspond to the transaction

request entries. There are three types of multi-level

request. The first request type is for a retrieval of both

action and object entities. The second type is for a

retrieval of only action items. The third type of request

0 is for object entities only. These are hierarchical

retrievals based on the number of levels. A tool may

request no more than the number of levels allowed in the

multi-level transaction table.

$4TOOLNAME PHASE TYPE LEVELS PARNAME PARREL

PARKEY SECNAME SECREL JSEC -KEY

SECALTNAME SECALTREL SECALTKEY

Figure 20. Multi-Level Transaction Table

The multi-level transaction table supports a single

77 entity type (action aQr object) retrieval via the parent

relation information. The secondary relation information is

ON 78

~. ~y: used for retrieval of both entity types. The secondary

information is used to retrieve the objects pointed to by

the action parent or vice-versa. This mechanism supports

the bulk of the retrieval request but the situation can

arise where an action entity points to objects contained in

more than one relation. To support this, an alternate

relation is provided. An example of this type of use arises

in the design phase. The objects pointed to by a parent

process are contained both in the processio relation and the

papassed relation. In this instance, all the table's

* relations are used to retrieve the information.

A key design decision was made not to support the

retrieval of an entity's aliases. Alias retrieval is not

supported for two reasons. First, the use of aliases is a

- - poor software engineering principle and is provided in the

data dictionary only to support the occasional problem which

arises when two large systems, both using a similar function

but with different names, av'e combined and the effort to

change one system's references to the entity is too exten-

sive to be warranted. Second, both the data manager and the

tools would require a much higher degree of sophistication

to resolve aliases. The effort to develop this sophistica-

tion versus the benefitL. derived dictate that alias retrie-

val not be supported.

A To show how a multi-level retrieval is performed, a

~.' P~* sample retrieval of an activity and its data items is

79

SW.IlI.

presented. Before examining the sample, note it is only for

the requirements phase. Different relations would be used

for the other two phases.

SAMPLE:

ahierarchy activityio
project project
hianame diname
loaname aname

Parent Name : loaname Secondary Name diname
Parent Relation: ahierarchy Secondary Relation: activityio
Parent Key : hianame Secondary Key : aname

The transaction parent value is used as a key (hianame
:"parent value) to identify all the parent's subordinate
activity names (loaname). These names are placed into a
list. If the number of levels is two or more, these names
are then used to retrieve the next level of subordinate
activity names. This process is followed until the re-
quested number of levels have been retrieved or there are no
more subordinate activities.

The list of activity names is used as a key (aname =
"activity name") to retrieve the associated data items
(diname). After the activity name list is exhausted, the
data manager uses the activity and data item names to
perform its retrieval functions to build the standard data
file.

*NOTE: The above example was for a retrieval request.
Id The multi-level transaction table can also be used in a

delete transaction. This provides a means to easily delete
an entire level of dictionary entries from the database
without having to explicitly identify each activity and data
item.

The sample showed a typical multi-level retrieval for

both entity types. A key aspect of the retrieval is the

selection of the parent and secondary relations. In an

object only retrieval, the dihierarchy relation would be the

parent and not activityio.

80
4

-~~~~ ~~~~~~~ V- r1W Uinnrg r-- r Wr WX V r W

Session Control. Session control is an important

part of the data manager retrieval function. The retrieval

portion of the data manager determine~s the status of all

requested data and generates the session control informa-

tion. This session information is maintained in two tables:

session entity table and session identification table. This

section examines the two session control tables and the data

manager's use of them.

Session Entity Table. The session entity

table (Fig. 21) is designed to track each entity used in a

session, its type, and update status. The session id

corresponds to the associated session identifier.

SESSIONID NAME TYPE I STATUS

Figure 21. Session Entity Table

The name and type fields reflect the data entity's name

and whether it is an action or object entity. The status

* reflects the update status of the entity. If the session

owner also owns the entity and the entity is not checked

out, tbe entity is placed in a write status, otherwise it is

* placed in a read status. Entity ownership is based on the

entity's author name and the session owner contained in the

tool transaction request.

81

AMA

~ ~ Session Identification Table. The require-

ments identified the need to maintain the status of a

session, describe the type of data used in a session, and

identify the session's owner and tool being used. To

satisfy these requirements, the session identification table

(Fig. 22) was designed.

pPROJECT PARENTNAME LEVELS PHASE TYPE

SESSIONID IOWNER TOOL

Figure 22. Session Identification Table

The project field contains the project name, which when

combined with the entity name, can access all the data

: -:elements in the entity. The phase and type fields identify

the data dictionary entry being used.

0The parent name and level fields are for tools which

require multiple levels of data to be retrieved. An example

of this would be to retrieve all the activities and data

items associated with an SADT chart. The parent name field

contains the data value used in the retrieval. The level
%4

field indicates how many levels of data were retrieved below

the parent level.

82

Aq

The session identifier must be unique for every

session. Therefore, a date/time stamp is used to designate a

session. The format of the field is aMMDDYYHHMMS (i.e.

a09198708l25). This format allows the session identifier to

be used as an Ingres relation name, providing a means for

future tools to create session specific relations based on

the session identifier without having to convert the

identifier to an Ingres acceptable form.

The owner and tool fields correspond to those in the

transaction request and provide an easy means to identify

* the session's owner and tool. This satisfies the require-

ment that checked-out data may be easily located. This

should facilitate group efforts by allowing the team members

to find needed information and coordinate with its owner to

- check the data back in. These fields are also used by the

data manager in validating update requests.

During a retrieval transaction, the data manager is

responsible for updating the session identification table

and the session entity table. The session identification

table entries are filled in using information contained in

the tool data request and tool description table. The only

A field not provided is the session identifier. The data

manager will assign this value based on the current date and

time.

Data Identification. The data to be retrieved is'

identified during request validation. The request valida-

83

* tion generates a linked list containing all the valid

entities. This list is used to retrieve all the data.

Data Retrieval. The retrieval of each data entity

is controlled by the appropriate tool data definition table.

The retrieval function is designed to perform all retrievals

according to the entry class. As each entity is success-

fully retrieved, its status is updated in its status

attribute. This attribute occurs in the entity type

relation, i.e. activity or parameter.

If an error occurs, the data manager identifies the

* error and records the error and its cause in the results

file. The status of the data entities which have been

retrieved to this point will be restored and the session

control tables corrected.

Standard Data File Build. The file description

header is written to the file before any data retrievals are

performed. Once the header is successfully written, the

data entities are written to the file. The entities are

written in the order they occur in the header with action

entities occurring first.

To support error recovery in the update function, a

copy of the standard data file is created at the successful

* completion of the retrieval function. The session iden-

tifier is used as the file name. The file is deleted

whenever the session of the same name is removed from the

session control tables.

84

RiO 289 629 COMO DATABASE INTERFACE FOR HETEROGENEOUS SOFTURRE 2/2
ENGINEERING TOOLS(U) AIR FORCE INST OF TECH
i MRIGHT-PATTERSON AFB OH SCHOOL OF ENGINEERINGp UNCLASSIFIED T D CONNALLY DEC 87 AFIT/GCS/ENG/87D-8 F/G 12/5 NL

EIIEEEEIIIIIIE
IhlllE~lEElllE
ElEEElhllllllE
ElEllEEEllEEEE
EllEEEEEEEIhhE
llllEEEEllEEEE

I fl m _

L L

I lii ~j1 .8

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

I

5%.

., Data Manager Update Function. The update function's

requirements identified the major components needed to

perform database updates. These components are request

-~ validation, database update, database housekeeping, and

error recovery. A major concern in the design of these

components is whether the update is using a standard data

file that is part of an existing session or if it contains

all new data. The two types of update and their effect are

considered in the discussion of the four main update

components.

* Request Validation. Validating a tool update

request consists of checking both the contents of the tool

update request and the information contained in the standard

data file. The validation includes checking for the

presence of required fields, that the fields in the request

and header match, and the requested transactions can be

performed.

Every field in the update request is required, except

for the parent, level, and data entity fields. These fields

are optional and are only used for deletions. This allows

the user to delete various entities without first building a

session file.

The tool identification, phase, and type fields are

checked against the tool description table for validity.

The remaining fields are checked for their presence and

4 their validity against established formats (reference

85

Appendix E). The transaction indicator is especially

important because it controls the steps taken in the

database updates.

Every field in the file description header must contain

a valid entry. If the transaction contains all new data,

the session identifier must also reflect this. Otherwise,

the session identifier must match an existing session in the

session identification table. The tool. identification,

phase, and type fields must also match the values in the

session identification table. If the file description

4 header values do not match those in the tool request, an

error is generated and the update is rejected.

After the control fields pass the validation check, the

Y1~V entities listed in the file description header are checked

to see if the indicated update can be performed. The

requested update status of an entity is checked against the

status maintained in the session entity table. If the two

statuses are incompatible, the update transaction is

rejected. When a new entity, either added in the session or

part of a tool originated session, is to be written to the

database, the database is checked to identify if an entity

exists with the same name. If one does, an error is

produced and the update is rejected.

Delete transactions require an extra step. The entity

list must be generated from the parent and level entries or

the data name entities contained in the tool request. This

86

list is used in place of the file description header's

entity list. All identified entities must not be in a write

status. If any entity is, it cannot be deleted by a non-

session request. If any entity in the list cannot be

deleted, the update is rejected.

Database Update. The data manager database update

routines support all database transactions. There are three

types of database updates made. These types are the

addition of a new entity, the deletion of an entity, and the

modification of an existing entity. The design of the

update routines is based on supporting these transaction

types.

All the update transactions are controlled by several

~ tables and lists. A linked list is created which contains

either the entity list contained in the standard file

description header or the deletion list generated during

request validation. The entities contained in the standard

data file are expected to occur in the same order as the

entity list. If an entity is listed for update in the

entity list but is not in the data file, the update is

rejected. Entities in a delete status do not have a

corresponding data entity in the standard data file's entity

list. The tool data definition table provides control of

the actual updates of the various relations constituting a

data entity. If a data element listed in the definition

AMI table does not occur in the data file, the file is rejected.

87

The addition of an entity is straightforward. The data

elements contained in the data file are placed in a struc-

ture. If all the elements are present, the data definition

table is used to control the database update. This method

allows only correct entities to be written. If an error

occurs building the structure, error recovery is simplified

by not having to recover from a partial update.

The file deletion routine uses the tool definition

table to identify the relations containing the data elements

to be deleted. If an entity is identified for deletion, but

* is not in the database, no error is generated.

The file modification routine utilizes both the delete

and add routines. The update process occurs in two phases.

~P The first is the deletion of the old entity. The second

phase is the addition of the modified entity. This method

was selected over trying to modify only the affected data

elements for simplicity and efficiency. To update only

modified data elements, the tool would have to track the

update status of each data element or it could identify the

entity as containing modified elements. The current tools

do not have the sophistication to maintain the status of

each data element, so the data manager would have to

identify the modified elements. The overhead involved in

either method far exceeds any benefit which would be derived

from reducing the number of relations updated.

88

After the database has been successfully updated, the

various work files and session control tables must be

updated. The work files are deleted, including the copy of

the standard data file made during session generation. The

session entity table entries for this session are also

deleted. The session identification table is updated by

removing the information associated with the session's iden-

tifier.

In the occurrence of errors, two types of actions can

be taken. Errors identified during request validation only

require the transaction error file be built and the update

be terminated. If an error occurs during the updates, the

database must be restored. The standard data file copy is

used to recover any entities which were deleted or modified.

The work file is also used to delete any new entities added

to the database. The appropriate error messages are

generated and the update terminated.

Common Database

* The basic design of the common database is well

explained in Thomas' thesis (16: 84-142). The data manager

requires a few extensions to this design. These extensions

0. are required to support the various tables used and to

enable entity status tracking. (Reference Appendix A for

the current entity relations and formats.)

Thomas intended for only one database to be used for

all three data dictionary phases. However for flexibility,

89

this is no longer the case. A database may now contain one

or more phases. The only requirement is that both entity

types used within a phase be present.

The tool data definition table and the session control

tables must also be supported by the database. These tables

(relations) only have to contain sufficient information to

describe the entity types stored in the database and support

the tools accessing the database.

Summary

The data manager design focused on the data manager's

functions, the format of the various tables used to track

and control database transactions, and the common database.

The goal of the design was to provide an easy to use system

which provides the user the flexibility needed to support

his various needs.

The tables are easily modified and changes have minimal

impact on the data manager or database. The data manager

can perform its various functions by using these tables, and

* when changes occur, significant code changes are not needed.

The error recovery provided is not sophisticated but it

maintains basic database consistency. The design impact on

* the common database was also minimal.

The design of the various components was oriented

towards maintaining system simplicity. The implementation

of the design and the results are discussed in the following

chapter.

90

VI. Implementation, Test, and Evaluation

Introduction

The primary goal of this thesis was to develop a

working data manager for use in the SEL. This chapter

examines the implementation issues of the data manager,

reviews the testing procedures used during development, and

evaluates the data manager from the tool developer's

viewpoint and its performance.

Implementation

The data manager implementation had to address several

issues. The first of these issues was the development

environment of the data manager. Another issue addressed

was the implementation of the data manager interface. The

final issue addressed was the error detection and recovery

methodology used in the data manager.

Environment. An objective of the data manager was for

it to be flexible and widely available to the SEL tools.

The AFIT computer environment and this objective dictated

the operating system, programming language, and DBMS to use

in the data manager implementation. Within AFIT, the mast

widely available computer systems are VAX 11/785s using the

Berkeley Unix 4.3BSD operating system. Common to these

systems is the Ingres DBMS. This availability directed the

__ selection of Unix and Ingres for use with the data manager.

Based on this selection, the programming language had to be

91

0N

-" C because it is the only language available which can

directly interface with Ingres. The interface between C and

Ingres is implemented using Embedded Quel (EQUEL), which can

be written directly into the C programs.

This environment supported the data manager development

very well, except for one weakness. The EQUEL pre-processor

would not allow a data item to be declared using the same

data name in separate functions within a single Unix file.

EQUEL would recognize only the first data item declaration

and indicated any subsequent declarations as multiple

definitions of the data item. This problem mandated the use

of a different data name in each function, even though the

data item was used in the same manner in each of the func-

tions.

Interface. The data manager interface implementation

had to address two problems. The first problem was pro-

viding a user acceptable response time for interactive

requests. The second problem was preventing a user from

improperly terminating the data manager and consequently

corrupting the database. The solution to these two problems

had a major impact on the data manager implementation.

The problem of providing a user acceptable response
6

time was a significant issue. Previous efforts (4, 16)

showed that poor response time caused user dissatisfaction.

The method selected to solve this problem was to develop an

.interactive menu program which generates a transaction

92

request file and keeps computer interaction to the minimum.

The data manager then uses this transaction file for

background processing. Background processing of the

transaction frees the user from having to wait at the

terminal for the transaction to finish. This is especially

important for transactions processing a large number of

entities which may require several minutes on a heavily used

system.

The transaction file interface with the data manager

permits the interactive generation of a request but also

* supports tools which can generate transaction requests

N without user interaction. These tool-generated transactions

can be executed in batch mode, freeing the user from

interacting with the data manager.

The ability of the data manager to run in the back-

ground also solves the improper program termination problem.

Unix provides background job execution which allows a

program to run without the user monitoring its execution.

By executing the data manager in the background, the user

cannot accidentally terminate its execution. A feature of

background jobs in Unix is the program can continue pro-

cessing even if the job initiator's connection is ter-

minated. This is an especially important feature consider-

ing the number of jobs which will be executed by remote

users via modem connections.

93

F6-f. rV

The data manager and Ingres provide the concurrency

control necessary to support multiple simultaneous users.

Ingres provides basic concurrency control but protects only

the database's physical structure. It does not prevent

multiple users from destroying the data entity structure.

The data manager's session control provides the concurrency

control necessary to protect the data entities' consistency.

It accomplishes this by marking all needed entities at the

beginning of a session. The data manager does not release

the entities until the session is successfully terminated.

Unlike large databases with many interactive users, the

central System 690 databi ,e has a low volume of users at any

one time and the likelihood of multiple users simultaneously

trying to access the same data entity is very small.

Error Handling. Error handling was an important

implementation issue with maintaining database consistency

being the primary concern. Error handling by the data

manager consists of three steps. The initial, and most

important, is error detection. The next step is correcting

any errors encountered. The final step is informing the

user of the error and its cause.

Error detection is an extensive portion of the data

manager. Each transaction request is validated for proper

format and contents. If the transaction is an update, the

standard file's description header is also validated for

proper format, and, in the case of a file being checked-in,

94

0> , -

1 - w -

a valid session identifier. If an error is detected during

validation, the transaction is terminated. If no error is

detected, the database updates begin.

Any errors encountered after request validation are

caused by an invalid entity list in the standard data file

or an Ingres error. An invalid entity list will be the most

common error and is usually caused by the standard file

being corrupted during a system-to-system file transfer.

This type of error is detected during database update

transactions. If the entity list contains all new entities,

4 any entity which had been written to the database prior to

the error is deleted. If the request is a session check-in,

all database updates are reversed, leaving the database and

session control files in the state prior to the attempted

check-in. Ingres errors are a more serious problem because

they indicate a possible system error. If an Ingres error

is encountered, the data manager attempts to return the

database to the state prior to the update request. This

type of error may corrupt the database and must be handled

carefully by the database administrator.

All errors are reported to the user. The data manager

identifies the type of error encountered and the possible

cause. This information is provided to a user in the .res

file associated with each transaction.

The form of error handling used in the data manager is

unforgiving. As soon as an error is detected, the database

95

is restored; if necessary, the error is reported; and the

data manager then terminates. Database consistency was the

driving concern and this consistency must be maintained, at

the expense of extra effort by users and tool developers.

This burden falls mostly on the tool developers in their

work in generating a valid standard data file.

Test

The testing strategy used in developing the data

manager occurred in four phases. These phases were unit

testing, integration testing, validation testing, and system

4
M testing (13: 502). This strategy is shown in Figure 23.

Unit testing examined a module' s interface, data

structure integrity, boundary conditions, and error handling

(13: 503-504). Each of these areas was tested using both

test data and through normal use of the modules. Because of

the extensive data passing between modules, the module's

ability to maintain a structure's integrity was focused on.

The module's error handling capability was also tested

4 heavily because of the database integrity issue.

Integration testing was the next test phase. Integra-

tion testing focused on uncovering interface errors (13:

4 507). A bottom-up incremental integration test was used

(13: 508). This method was selected because the data

manager's low level modules contain the database update and

retrieval routines. The successful implementation of the

data manager depended on these modules working properly.

96

These lower modules were tested first to determine the

J." feasibility of using a data definition table and generic

database access routines.

Design Software
Module nit infomtion Requiremn

Tet

Validation

bledeTest

Fgr23 StwTestnModule Unit

-- Test

Tested Test

. , Module
i Other System

Elements
Module (Unit

| " Test Operational

~System

I ,. _.,Figure 23. Software Testing Steps (13: 503)

97

I

A Validation testing occurred next. This testing phase

is concerned with the "does it work as expected" question

(13: 514). The data manager validation test measured its

ability to properly process data generated by the current

A SEL tools. The tools used in the test were the new SADT

Editor (9) and the data dictionary editor. The SADT Editor

files were successfully tested. The data dictionary file

test required the development of a translator. The trans-

lator converts the standard data file for the design phase

data entities to the data dictionary file format and vice-

versa.

System testing is concerned with overall system issues,

* ~a'~.i such as software and hardware compatibility, and usually

involves different groups of individuals (13: 516). In this

instance, the system issues were addressed in the validation

tests.

Evaluation

S The data manager was evaluated based on two criteria:

how easy was it to use in integrating tools into System 690

and what were its performance characteristics. The integra-

tion evaluation was based on integrating a new tool into

System 690 and integrating an existing tool. The perfor-

mance evaluation was based on a series of tests measuring

the time the data manager took to complete a specific

transaction.

98

New Tool Integration. The integration of the standard

data file, data manager, and a new tool (9) was deemed

successful by the tool's developer. No significant errors

were encountered in using the standard data file. The

structure of the data element entries was easy to manipulate

* by the tool. Some of the entries within an element (ie.

- multi-line indicator) were not used but with each entry on a

separate line, the unused entries could be easily skipped by

the tool.

The overall effort of incorporating the standard data

* file was small. Most of the effort was needed in maintain-

* ing and generating the file description header information.

The estimated effort to use the standard data file was 1% of

the programming effort.

Existing Tool Integration. The existing tool chosen

for integration with the data manager was the Data Diction-

ary (DD) editor. The DD editor provided an excellent

opportunity to measure the integration effort because the DD

editor's execution is directly related to its file format.

For this reason, a translator was developed to convert the

standard data file to a DD file and vice-versa. The DD

editor also had to be modified to support using the standard

data file.

5-'' The bulk of the work required to integrate the DD

editor with the standard data file was in developing the

translator. This translator was straightforward to design

99

and implement because the standard data file is already in

the proper order so it is a one-to-one translation for each

field.

The DD editor had to have a minor change made so that

it could track the session identifier. This change was

necessary to insure the session identifier remained with the

associated file. The modification required the addition of

only 10 lines of code and had no impact on the editor's

performance.

The results of integrating the standard data file and

* the tools showed that the file lends itself to the System

690 tool structure and it supports both old and new tools.

The ease of integration was a key requirement of the data

manager and it was successfully met.

Performance. The standard data file was integrated

with both new and old tools which was a basic requirement.

* Another requirement was for the data manager to provide an

acceptable level of pefrac.This section evaluates the

execution performance of the data manager.

To measure the data manager's performance a series of

test jobs were run at various times of the day for a week on

the two VAX 11/785 systems (ASC & SSC) available within

AFIT. The job consisted of a multi-level retrieval, 1

level, and the immediate submittal of this session file for

writing to the database. The resulting standard data file

.. ././ contained seven action entities and two object entities.

100

4> The jobs were run at two hour intervals from 0800 until 0200

to examine the data manager's performance under a wide

variety of system loads.

Results. The performance parameters measured were

the times required to perform the retrieval and the time

required to perform the update. System load was based on

the number of users on the system during data manager

execution. A comparison was made between the number of

users and active processes and they were found to be

proportional.

* The final results showed a surprising performance

difference between the ASC and SSC computer systems.

Although the two systems had approximately the same number

i~ @ of users, system configuration, and identical databases, the

ASC executed the jobs, on average, twice as fast as the SSC.

This difference was attributed to the SSC's job mix. The

SSC is used in the AFIT Engineering School and processes

more computational intensive jobs than the ASC. Because of

the differences, the ASC results (Fig. 24) are presented.

The average time to perform the retrievals was 121

-~ seconds with seven users on the system. The average time to

perform the updates was 114 seconds. The SSC results, based

on the best performance for each time period, were 280

seconds for the retrieval and 257 seconds to perform the

* update with an average of eight users on the system. The

~ :.~ ASC times were improved to 114 seconds for the retrieval and

101

106 for the update when the worst performance time period

was discarded. The time of day was 2400 when overnight

processing was initiated. The worst performances observed

were 200 seconds for the retrieval and 213 seconds for the

update.

RETRIEVAL RESULTS:

BEST OBSERVED: 1:23 MIN
WORST OBSERVED: 3:20 MIN

AVERAGE: 1:54 MIN

* UPDATE RESULTS:

BEST OBSERVED: 1:20 MIN
WORST OBSERVED: 3:33 MIN

AVERAGE: 1:46 MIN'S

Figure 24. Data Manager ASC Performance Results

The retrieval consists of building the list of entities

to be retrieved based on the parent and retrieving and

* writing the entities to the standard data file. These times

were monitored internally by the data manager. The time

required to build the entity list using the multi-level

retrieval was important because this incurs much more

" overhead than a retrieval specifically listing the required

entities. The average time to perform the multi-level list

build was 40 seconds. Without this overhead the retrievals

would finish in about 90 seconds, but the extra time is a

102

Sid

small penalty for the benefits derived. The user is assured

of receiving all the existing entities and it saves him the

trouble of typing in the entity list. A user could not

A manually build the list as fast as the data manager.

The update time will be proportional to the number of

entities in the file. There is no way for the user to

increase its performance, but less than two minutes to

update the database is acceptable.

Summary

The data manager implementation was greatly affected by

the AFIT computer environment which helped dictate the use

of Unix, C, and Ingres. The capability for background

processing in Unix was an important factor in developing the

data manager interface. The interface was implemented to

require minimal user interaction. The data manager imple-

mentation also placed a high degree of emphasis on error

detection and recovery, with database consistency being the

main concern.

The data manager was thoroughly tested beginning at the

* lowest levels and slowly integrated from bottom to top. The

data manager was tested using test data and tool-generated

* data. The validation testing showed that the data manager

was capable of processing tool requests and could success-

fully perform its expected functions.

The evaluation measured two key features of the data

manager: the ease of integrating the standard data file and

103

tools and the performance of the data manager. The results

of integrating the standard data file into both old and new

tools showed the file to be easily integrated with minimal

impact on the tool itself. The integration of the standard

data file into existing tools will probably always require a

translator be developed, but only a single translator is

needed. Other tools do not have to build a translator to

use another tool's data. This avoids the need for a "power

set" (14) of interfaces.

The performance measurement showed an acceptable

* response time for performing updates and retrievals. The

poor performance of the SSC was surprising, but it did prove

:j the advantage of having a batch interface. If the data

ft 0 manager was implemented on a slow system, it could be

executed in batch mode without-the user having to wait 10

minutes for the transaction to finish.

104

20. u

VII. Conclusions and Recommendations

Conclusions

The purpose of this thesis was -.o implement a common

database interface which integrates the separate tools in

the AFIT Software Engineering Laboratory. This interface

was required to not only integrate the existing tools but

also support the addition of future tools to the SEL. The

integrated tools would then be able to share a common data-

base.

* The method selected to implement the interface was the

use of a standard data file and a data manager. The

standard data file is used to transfer data between the

44P tools and the data manager. The data manager performs all

database updates and retrievals.

The standard data file has a standard structure that

all the tools and the data manager can interpret. The

flexibility of the standard data file is provided by being

able to adjust the order and contents of the data elements

in the file based on a tool's specific needs.

The data manager is the key component of the interface.

Its key features are its ability to generically perform

* database updates and retrievals, provide session control,

and support error recovery. The generic database access

allows an existing tool's data file requirement to be easily

~ -'Aincorporated with little or no programming changes. The

a. 105

aW.

I generic access also allows the addition of new tools into

the SEL. The session control function performs basic data

access control by allowing only an entity's owner to modify

it. Session control also provides the librarian function of

checking data entities in and out of the database and

monitoring their status. The final function of the data

manager was to provide error recovery. The data manager

insures the logical structure of the data entities is

* maintained and that it can restore the database back to the

4 state prior to the error.

The standard data file is an ASCII file which can used

on all the current SEL workstations and those which are

planned for later addition. The data manager is implemented

in C and uses the Ingres DBMS. The data manager makes

extensive use of Ingres to maintain the various tables it

uses in performing its functions.

The implementation of the common database interface was

evaluated to see if it met its integration and performance

requirements. The standard data file was found to be easy

to use by both old and new tools and well suited for its

role in the interface. The data manager was evaluated to

measure its execution performance. The evaluation found the

data manager capable of being able to perform a typical

ft. database retrieval or update in under two minutes. This

time is acceptable within the System 690 environment.

106

Overall, the implementation of the data manager and

standard data file satisfied all the established require-

ments. A system which successfully integrates the existing

System 690 tools was implemented and it was shown that this

system supports the addition of new tools into System 690

and creates an integrated software engineering environment.

Recammendations

The implementation of the data manager presents the

opportunity for several enhancements to the System 690

environment. Primarily these enhancements are modifications

to the data manager or the development of database util-

ities. However, the data manager provides the means for

new, more comprehensive and flexible tools to be added to

System 690.

The data manager and standard data file need to be

modified to allow multiple start/stop time entries. These

multiple entries would support a more comprehensive tracking

of tool usage patterns. Currently, only the last time a

tool was used is passed to the data manager. This does not

reflect true tool usage because the data is manipulated

several times during a session. With only one entry, none

but the last of these manipulations are retained in the

database, providing a distorted view of tool usage.

In conjunction with the multiple start/stop time

j tracking capability, an enhanced performance measurement

tool needs to be developed. The tool would monitor the

107

.. v appropriate information (ie. user, tool id, transaction,

results) to accurately measure tool and data manager usage

and performance. As part of this tool, a history mechanism

could be provided to monitor trends such as unbalanced tool

usage and to identify and isolate the cause of consistent

tool or data manager errors.

A standard data file print utility needs to be develop-

ed. The only means available to print data dictionary

* entries are to convert the standard data file into a data

dictionary file and use an existing print program. The

print utility needs to be able to print a standard data file

for any phase and for multiple data entities in the file.

4' To support an integrated environment, a database

consistency checking system needs to be developed. The data

manager maintains consistency only at the entity level. A

means to maintain design consistency within a phase and,

more importantly, across phases is needed. This would

prevent many of the design inconsistencies introduced during

system development, especially in group projects.

To better support batch tool transaction requests, a

file transfer system needs to be developed. A means to

transfer files within System 690 without user interaction

would provide the basis for a distributed design environment

where a designer would only have to know how a tool works,

P~s not where or how its data files are used or stored.

108

0Mk

Appendix A: Data Dictionary Database Relations and
Data Dictionary Descriptions

The database relations for the data used in the data

dictionary entries specified in the Software Development

Documentation Guidelines and Standards (5) were developed by

Thomas (16) and refined by Foley (4). This appendix

provides the definitions of the data dictionary database

relations and indicates the database relation and attribute

for each data dictionary entry field.

KEY: a) The class of each relation is shown in
parenthesis:
ie. activity (1) -- activity relation; Class I

b) The type of each data dictionary field is provided
in parenthesis:

(3) -- Single-line field
ie. NAME (S): name

(M) -- Multi-line field

ie. DESCRIPTION (M): desc linel
desc line2

(G) -- Group field

ie. ALIASES (G): aliasname
WHERE USED: where

COMMENT: comment

c) Each data dictionary field indicates the relation
and attribute for the field and its key(s). The
key is formed using the indicated attribute(s) and

-project.

ie. NUMBER: activity number aname
1

4-J

109

The relations and data dictionary entries are presented

in the following order:

-. REQUIREMENTS PHASE:
ACTIVITY -- Action Entity
DATA ITEM -- Object Entity

DESIGN PHASE:
PROCESS -- Action Entity
PARAMETER -- Object Entity

IMPLEMENTATION PHASE:
-, MODULE -- Action Entity

VARIABLE -- Object Entity

11

9N^

ACTIVITY RELATIONS

activity (1)
project c12
aname c25
number c20
status ci

adesc (2)
project c12
aname c25
line i2
description c60

activityio (3)
project c12
aname c25
diname c25
type cll

* aalias (4)
project c12
aname c25
aliasname c25
comment c60

ahierarchy (5)
project c12
hianame c25
loaname c25

areference (4)
project c12
aname c25
reference c60
reftype c25

ahistory (6)
project c12
aname c25
version clO
date c8
author c20

Scomment c60

-S ,,

S..

V', 1

" ,ii

,.ACTIVITY DATA DICTIONARY ENTRY

NAME (S): activity aname aname

TYPE: ACTIVITY

PROJECT (S): activity project aname

NUMBER (S): activity number aname

DESCRIPTION (M): adesc description aname lineINPUTS (M): activityio diname aname type (IN)

OUTPUTS (M): activityio diname aname type (OUT)

CONTROLS (M): activityio diname aname type (CON)

MECHANISMS (M): activityio diname aname type (MECH)

ALIASES (G): aalias aliasname aname

COMMENT: aalias comment aname

PARENT ACTIVITY (S): ahierarchy hianame loaname

REFERENCE (S): areference reference aname

REFERENCE TYPE: areference reftype aname

4'VERSION (S): ahistory version aname

VERSION CHANGES (S): ahistory comment aname
'P.

DATE (S): ahistory date aname

a: AUTHOR (S): ahistory author aname

112

'S..

-* " l 12 - -

DATA ITEM RELATIONS

dataiten (8)
project c12
diname c25
datatype c25
low c15
hi c15
span c60
status cl

didesc (2)
project c12
diname c25
line i2
description c60

divalueset (4)
project c12

* diname c25
value c15

.1 dihierarchy (5)
project c12
hidiname c25
lodiname c25

dialias (4)
project c12
diname c25
aliasname c25
comment c60
whereused c25

diref (4)
project c12
diname c25
reference c60
reftype c25

dihistory (6)
project c12
diname c25
version clO
date c8
author c20
comment c60

113
S.

DATA ITEM DATA DICTIONARY ENTRY

NAME (S): dataitem diname diname

TYPE: DATA ELEMENT

PROJECT (S): dataiten project diname

DESCRIPTION (M): didesc description diname line

DATA TYPE (S): dataitem datatype diname

MIN VALUE (S): dataitem low diname

MAX VALUE (S): dataitem hi diname

RANGE (S): dataitem span diname

VALUES (M): divalueset value diname
4

PART OF (S): dihierarchy hidiname lodiname

COMPOSITION (M): dihierarchy lodiname hidiname

ALIASES (G): dialias aliasname diname

WHERE USED: dialias whereused diname

COMMENT: dialias comment diname

SOURCES (M): activityio aname diname type (OUT)

DESTINATIONS:

INPUT (M): activityio aname diname type (IN, MECH)

CONTROL (M): activityio aname diname type (CON)

REFERENCE (G): diref reference diname

REFERENCE TYPE: diref reftype diname

a VERSION (S): dihistory version diname

VERSION CHANGES (S): dihistory comment diname

DATE (5): dihistory date diname

_AUTHOR (S): dihistory author diname

114

I

PROCESS RELATIONS

process (1)
project c12
prname c25
number c20
status ci

prdesc (2)
project c12
prname c25

. line i2
description c60

processio (3)
project c12
prname c25
paname c25
direction c4

* type c4

pralias (4)
project c12
prnaze c25

* - aliasname c25

comment c60

prcall (5)
project c12
prcalling c25
prcalled c25

pralg (2)
project c12
prname c25
line i2
algorithm c60

prreference (4)
project c12
prname c25
reference c60
reftype c25

prhistory (6)
project c12
prname c25
version CIO
date c8
author c20

- comment c60

115

i•

5/

PROCESS DATA DICTIONARY ENTRY

NAME (S): process prname prname

PROJECT (S): process project prname

TYPE: PROCESS

NUMBER (S): process number prname

DESCRIPTION (M): prdesc description prname line

INPUT DATA (M): processio paname prname direction (IN)
type (DATA)

INPUT FLAGS (M): processio paname prname direction (IN)
type (FLAG)

OUTPUT DATA (M): processio paname prname direction (OUT)
type (DATA)

S
OUTPUT FLAGS (M): processio paname prname direction (OUT)

type (FLAG)

ALIAS (G): pralias aliasname prname

COMMENT: pralias comment prname

CALLING PROCESSES (M): prcall prcalling prcalled

PROCESSES CALLED (M): prcall prcalled prcalling

ALGORITHM (M): pralg algorithm prname line

REFERENCE (G): prreference reference prname

REFERENCE TYPE: prreference reftype prname

* VERSION (S): prhistory version prname

VERSION CHANGES (S): prhistory comment prname

DATE (S): prhistory date prname

AUTHOR (S): prhistory author prname

116

AL

:.

PARAMETER RELATIONS

parameter (8) papassed (4)
project c12 project c12
paname c25 paname c25
datatype c25 prcalling c25
low c15 prcalled c25
hi c15 direction c4
span c60 iopaname c25
status cI

padesc (2)
project c12
paname c25
line i2
description c60

pavalueset (4)
project c12
paname c25
value c15

pahierarchy (5)
project c12
hipaname c25
lopaname c25

paalias (4)
project c12
paname c25
aliasname c25
comment c60
whereused c25

paref (4)
project c12
paname c25
reference c60

! ireftype c25

pahistory (6)
project c12
paname c25
version clO
date c8
author c20
comment c60

.11

,/. 1 17

PARAMETER DATA DICTIONARY ENTRY

NAME (S): parameter paname paname

PROJECT (S): parameter project paname

TYPE: PARAMETER

DESCRIPTION (M): padesc description paname line

DATA TYPE (S): parameter datatype paname

MIN VALUE (S): parameter low paname

MAX VALUE (S): parameter hi paname

RANGE OF VALUES (S): parameter span paname

VALUES (M): pavalueset value paname

PART OF (S): pahierarchy hipaname lopaname

COMPOSITION (M): pahierarchy lopaname hipaname

ALIAS (G): paalias aliasname paname

WHERE USED: paalias whereused paname

COMMENT: paalias comment paname

REFERENCE (G): paref reference paname

REFERENCE TYPE: paref reftype paname

VERSION (S): pahistory version paname

VERSION CHANGES (3): pahistory comment paname

DATE (S): pahistory date paname

AUTHOR (S): pahistory author paname

CALLING PROCESS (G): papassed prcalling paname

6 PROCESS CALLED: papassed prcalled paname

DIRECTION: papassed direction paname

I/O PARAM NAME: papassed iopaname paname

a

118

.- g o

NODULE RELATIONS

module (1) modalg (2)
project c12 project c12
modname c25 modname c25
filename c25 line i2
number c20 algorithm c60
status cI

moddesc (2)
project c12
modname c25
line i2
description c60

modpass (3)
project c12
modname c25
varname c25
type c4

moduleio (3)
project c12
modname c25
varname c25
direction c8
type C12

modcall (5)
project c12
modcalling c25

*modcalled c25

modalias (4)
project c12

modname c25
aliasname c25
comment c60

modreference (4)
project c12
modname c25
reference c60
reftype c25

modhistory (6)
project c12
modname c25
version CIO
date c8
author c20

S"--" comment c60

119

'4.

MODULE DATA DICTIONARY ENTRY

NAME (S): module modname modname

VPROJECT (S): module project modnaze

TYPE: MODULE

NUMBER (S): module number modnane

DESCRIPTION (M): moddesc description modname line

PASSED VARIABLES (M): modpass varname modname type (PASS)

RETURNS (N): modpass varname modname type (RET)

GLOBAL VAR USED (M): moduleio varname modname
direction (USED) type (GLOB)

GLOBAL VAR CHANGED (M): moduleio varnane modname
direction (CHANGED) type (GLOB)

FILES READ (M): moduleio varname modname
direction (READ) type (FILE)

- FILES WRITTEN (M): moduleio varname modname
direction (WRITTEN) type (FILE)

HARDWARE INPUT (M): moduleio varnaze modname
direction (IN) type (HARD)

HARDWARE OUTPUT (M): moduleio varname modname

direction (OUT) type (HARD)

CALLING MODULES (M): modcall modcalling modcalled

MODULES CALLED (M): modcall modcalled modcalling

0 ALIASES (G): modalias aliasname modname

COMMENT: modalias comment modname

REFERENCE (G): modreference reference modname

0REFEFERENCE TYPE: modreference reftype modname

VERSION (S): modhistory version modname

*DATE (S): modhistory date modname

AUTHOR (S): modhistory author modname

120

FILENAME (S): module filename modname

ALGORITHM (M): modalg algorithm modname line

'

0.

v-v

I'. 121

".p
O4

VARIABLE RELATIONS

variable (8) varhistory
project c12 project c12
varname c25 -rname c25datatype c25 version c1O
low c15 author c20
hi c15 date c8
span c60
storetype c12
status cl

vardesc (2)
project c12
varname c25
line i2
description c60

varvalueset (4)
project c12

* varname c25
value c15

varhierarchy (5)

project c12
hivarname c25
lovarname c25

varalias (4)
project c12
varname c25
aliasname c25
comment c60
whereused c25

varpassed (3)
project c12
varname c25

* modname c25
direction c4

varreference (4)
project c12
varnaze c25

reference c60
reftype c25

- -. 1-.

VARIABLE DATA DICTIONARY ENTRY...0
' NAME (S): variable varname varname

PROJECT (S): variable project varname

V TYPE: VARIABLE

DESCRIPTION (M): vardesc description varname line

DATA TYPE (S): variable datatype varname

MIN VALUE (S): variable low varname

MAX VALUE (S): variable hi varname

RANGE OF VALUES (S): variable span varname

VALUES (S): varvalueset value varname

STORAGE TYPE (S): variable storetype varname

K PART OF (S): varhierarchy hivarname lovarname

COMPOSITION (M): varhierarchy lovarname hivarname

ALIASES (G): varalias aliasname varname

WHERE USED: varalias whereused varname

COMMENT: varalias comment varname

PASSED FROM (M): varpassed modname varname direction (FROM)

PASSED TO (M): varpassed modname varname direction (TO)

REFERENCE (G): varreference reference varname

* •REFERENCE TYPE: varreference reftype varname

VERSION (S): varhistory version varname

DATE (5): varhistory date varname

AUTHOR (S): varhistory author varname

W"

-10

%12

..

• * ° .5a

• e. 123

.5

Appendix B: Standard Data File Format

Overview

The standard data file (SDF) is the interface between

the tools and the data manager (DM). The data file consists

of two parts, a file description header and data elements.

The format and contents of these two components are ex-

amined. The overall file structure is also presented.

File Description Header

The file description header (Fig. 1) provides a full

description of the file's data contents to both the tool and

the data manager. The TOOL ID indicates the tool the data

-. elements are formatted for and the PHASE and TYPE fields

* provide the type(s) of data elements contained in the file.

This section examines the format of the file description

header and establishes the acceptable field values. Figure 2

provides an example file header.

Field Values

The standard data file may be generated by either

the data manager or a tool. The file's source can affect a

field's contents. In those instances, the differences are

pointed out.

12

rN

SESSION ID

TOOL ID

PROJECT

AS PHASE

TYPE

START TIME

STOP TIME

LIST OF ENTITIES:
Name Type Status

Name Type Status

5

*)-o Figure 1. File Description Header Format

#@@BEGINO@#
W##HEADER BEGIN#@#
a08048710045
SADT
ECS SYSTEM
ACT
BOTH
000000
111111
Build Database ACT W
CRT Input OBJ R

* #@#HEADER END#@#

WI

Figure 2. Example File Description Header

125

N

SESSION ID: The session identifier indicates the
overall update status of the data contained in the file.

V There are three types of session id entries:

1) All data is in a retrieve status and may not

be updated. (DM generated file)

ENTRY: "CONTAINS ONLY RETRIEVE ENTITIES"

2) All data entities are new and being submitted
to the DM for the first time. (Tool generated
file)

ENTRY: "SESSION CONTAINS ALL NEW RECS"

3) The data entities were retrieved from the
database for update. (DM generated file)

ENTRY: "amaddyyhhmjs" (session identifier)

* a: Initial character must be "a"

The remaining fields are numeric. Any two
position value (ie. mm, hh) which is less than
10 must use a 0 in the first position
(ie. Jan->01).

mm: Month
dd: Day
yy: Year
hh: Hour (24 hour clock)
mm: Minutes
s: Seconds (10's position value)

TOOL ID: Contains the code identifying the tool. Used
by the tool to insure the data is formatted for its use.
Data manager uses the TOOL ID to help determine the format
of the standard data file. Codes currently used:

1) SADT -- SADT Editor (Sun)

2) DD -- Data Dictionary Editor (Z-100)

PROJECT: Contains the project name of all the data
5 entities in the file. May contain up to 12 characters.

PHASE: Identifies the phase of the data entities in
the file. Codes currently used:

1) REQ -- Requirements Phase

2) DES -- Design Phase

.4. 126

SoL

:3) CODE Code (Implementation) Phase

TYPE: Identifies the data type of the entities in the
file. Codes used:

1) ACT -- Only ACTION entities are in the
' file.

2) OBJ -- Only OBJECT entities are in the
file.

3) BOTH -- At least one ACTION entity and one
OBJECT entity are contained in the file.

NOTE: These values may not be changed without
extensive modification of the DM.

START/STOP TIME: Contains the start and stop times
used in tracking a tool's usage. Entry format:

1) DM initialized value prior to tool usage:

START-> 000000
STOP -> 111111

i 2) Format of values provided by a tool after an update
transactions:

ENTRY: "ddd mm dd hh:mm:ss yyyy"

SAMPLE: "Wed Nov 18 12:12:03 1987"

ENTITY LIST ENTRY: Each entity entry consists of three
fields. Each entry corresponds to an entity in the file.
The order of the entities in the SDF MUST correspond to the
entity list entry order. *NOTE: ACTION type entities MUST
occur before object type entities when the file contains

• both types.

FORMAT:L ENTITY NAME: Pos 0-24 (25 char)
BLANK: Pos 25-29 (5 spaces)

ENTITY TYPE: Pos 30-32 (3 char)
BLANK: Pos 33-38 (6 spaces)

ENTITY STATUS: Pos 39 (1 char)

ENTITY NAME: contains 1-25 characters

127

,-"S

ENTITY TYPE: Codes used:

1) ACT -- ACTION entity

2) OBJ -OBJECT entity

ENTITY STATUS: Indicates the update status of the

entity. Codes used:

1) R -- Retrieve status, do NOT update. Can also
be used by a tool to indicate an entity has not been changed

* during an update.

2) W -- Write entity to database. In new writes,
W is the only acceptable status.

3) D -- Delete entity. May only be used in an
update transaction where the entity has been checked-out.
NOTE: A delete entity does NOT have a corresponding set of
data elements in the file. Only entities in a W or R status
have data elements in the file.

Data Elements

The data elements in the standard data file are grouped

-~ by data dictionary entry. The order of the elements are

dictated by the Tool Data Definition Table order. This

order must be maintained in files submitted by a tool to the

DM for database update. The entity's name must be the first

data element record in each entity. A second requirement is

that every data element in a data dictionary entry be

contained in the SDF, even if it has an empty ("blank")

contents. The DM assumes a missing element was lost during

file transfer and generates an error. The DM will also

build the element with a blank contents field when the

element's relation does not contain an entry.

128

I%
r%. e , .- * -

-" Format

Figure 3 shows the format of a data element. Figure 4

provides an example data element.

~A. DATANAME

FIELD LENGTH

MULTI-LINE INDICATOR

/ NUMBER OF FIELDS

DIRECTION

TYPE

CONTENTS

Figure 3. Data Element Record Format

diname
25
N
1

OUT
CRT Output

Figure 4. Sample Data Element Record

FIELD VALUES

DATANAME: Corresponds to the dataname maintained in
" " the Tool Data Definition Table.

129

.4..

I

FIELD DESCRIPTION: Field length of the data element's
contents field. Values: I - 60.

MULTI-LINE INDICATOR: Indicates whether the field
consists of multiple lines (ie. description). Values Y or N.

NUMBER OF FIELDS: Indicates the number of fields
* associated with a group field.

ie. ALIAS: (3)
WHERE USED: (2)

COMMENT: (1)

DIRECTION: Indicates the direction of the element.
Used in instances where the same DATANAME applies to
different data dictionary fields. Corresponds to the
element's database direction value. Field contains "$:z"
when it is unused.

EXAMPLE: INPUT FLAG
OUTPUT DATA

DIRECTION: IN
OUT

In the example above, both entries have the same
DATANAME (paname). To differentiate between the two,
DIRECTION, in conjunction with TYPE, is used to indicate
which specific data dictionary field the element belongs.

TYPE: Indicates the data element's type. Corresponds
to the element's database type value. May be used with the
DIRECTION field or may be used by itself for elements which
are dependent only on type, ie. INPUT, OUTPUT, CONTROL,
MECHANISM in the acitivityio relation. Field contains "2$"
when unused.

CONTENTS: The database contents of DATANAME.

File Format

A complete example of the standard data file is shown

in Figure 5. This example contains BOTH action and object

entities. If the file contains only ACTION or OBJECT

entities, the headers used for the other entity type are not

" included in the SDF.

130

#@@BEGIN@@*
#W#HEADER BEGIN#@#
a08048710045
SADT
ECS SYSTEM
ACT
BOTH
000000
111111

Build Database ACT W
CRT Input OBJ R
W@*HEADER END#**
###ACTION TYPE##*
@##START##@
aname
N
1

Build Database
0

o (Remaining data elements in Build Databasel
0

@##STOP##*
M#*ACTION END###
###OBJECT TYPE#*#
0*#START##0
diname
N

CRT Input
0
a {Remaining data elements in CRT Input)
0

@##STOP##@
"- ###OBJECT END#*#

0ENDO#

Figure 5. Sample Data File Format

131

'q~

Appendix C: Data Manager Database Relations Definitions

Overview

The Data Manager (DM) uses various Ingres relations to

control its data retrieval and update functions and to

support session control. This appendix examines these

relations and their formats. An overall example of how the

relations are used is also provided.

* Data Retrieval and Updates

_ The following relations are used to identify, retrieve,

and update the data elements used in the standard data file

(SDF).

~ Tool Description Table
Tool Data Definition Table
Entity Identification Table
Multi-level Transaction Table

Tool Description Table

The Tool Description table contains the name of the

Tool Data Definition Table to use in generating and reading

the SDF. The Tool Description Table contains a data

definition table entry for each phase and type of data each

tool uses. This section examines the Tool Description

* Table's Ingres relation (Fig. 1) and establishes its

attribute formats.

132

0-

tooldesctab
* code clO
: phase c6
* type c3

deftable c12
description c60

Figure 1. Tool Description Table Relation

Format

CODE: Tool Code. Code used to uniquely identify the
tool, ie. DD.

PHASE: Phase of the data entity to be manipulated:
REQ, DES, CODE

TYPE: Type of data to be manipulated: ACT or OBJ

DEFTABLE: The relation name of the Tool Data Defini-
tion Table describing the data used by the tool in the

y indicated PHASE and TYPE.

DESCRIPTION: Means to provide additional information
about the tool, ie. "SADT Editor - Sun Workstation REQ
only".

Tool Data Definition Table

Contains the information necessary to retrieve data for

a tool, generate the tool's SDF, read the tool's SDF, and

"'p perform the required updates. This section examines the

table's Ingres relation (Fig. 2), specific requirements, and

its attribute formats.

Requirements

1) RELATION NAME: Each phase and type of data entity
used by a tool requires a separate data definition table to
describe it.

, - Example: sadtdata -- SADT Data Item
sadtact -- SADT Activity

133
Ue

ToolData_-DefinitionTable
dataname c12
relname c12

4keyl c12
key2 c12
flddesc c4
entryclass c2
mifid CI
numfids c3
direction CIO
type dIO
deiflag ci
version c12

Sline i2

Figure 2. Tool Data Definition Relation

2) TABLE ENTRY ORDER: The table entry order is
crucial. The table order dictates the order in which the DMI
writes data to the SDF and dictates the order the DMI expects
the data elements to be in when reading the SDF for updates.

The FIRST entry in the table must be the entity's
attribute name. This is dictated by the DMI which uses the
field for validating updates and retrievals. The current
first entries are the following:

REQ
ACT: activity aname
OBJ: dataitem diname

DES
ACT: process 1prname
OBJ: parameter vaname

CODE
ACT: module modname
OBJ: variable varname

3) FIELD MARKERS: The table contains attributes
(fields) that are not used by every element. Some of the
attributes are very specific to support certain elements.
These fields must contain "*z*" when they are unused because
the DM checks for this value to determine if the attribute
is required for a transaction.

Format

134

[e - .

[,~.. - 4 4. . F--

DATANAME: Data element name. The field has two

purposes:

' 1) Attribute of the data element.
ie. aliasname

2) Corresponds to dataname used in the SDF.

RELNAME: Relation name containing DATANAME.

KEYl: Key attribute name used to retrieve and update
DATANAME. It is compared to the "entity name" being

Aaccessed.

ie. range of r is relname
retrieve (x = r.DATANAME)
where (r.KEYl = entity-name)

KEY2: Currently unused by any relation. Provided for
4 future tools which require another key to access DATANAME.

If unused, must contain "*2$.

FLDDESC: Field length of the Ingres DATANAME attribute.
Also used as the FIELD LENGTH in the SDF.

ENTRYCLASS: Entry classification of DATANAME. The key
field used by the DM to identify the retrieval and write
routines to use with the element.

MLFLD: Multi-line field indicator. Contains either Y

or N. Corresponds to MULTI-LINE INDICATOR in the SDF.

NUMFLDS: Number of fields in a single relation to be
-w retrieved or written to the database.

ie. aliasname 3
whereused 2
comment I

DM builds retrievals and updates using all three
fields. It retrieves each table entry from n... I for each

database access. After retrieving the table entries, the DM

O then performs the retrieval or update.

DIRECTION: Direction used in certain relations (ie.

processio - IN, OUT) to differentiate among the entries in

the relation. For DATANAMEs which do not use DIRECTION the

field contains "**".

NOTE: ALL relations which require a direction

, field MUST use the attribute name: direction.

135

I

TYPE: Type used in certain relations (ie. activityio -
MECH, CON) to differentiate among the entries in the
relation. For DATANAMEs which do not use TYPE the field
contains "22$".

.4"

NOTE: ALL relations which require a type field
MUST use the attribute name: type.

DELFLAG: Delete Flag. Contains either Y or N. Used by
the DM to control data deletions.

DELFLAG NOTE:

1) Certain data elements used in an entity do not
get deleted when the entity is deleted because
they are "owned" by another entity (ie. activityio
elements used in a data item entry belong to an
activity entity).

* 2) Only one element in a relation is marked for
deletion. This deletes the entire tuple as-
sociated with the element.

ie. aliasname Y
whereused N
comment N

3) The DM performs two types of deletions:

a) Entity Delete -- Delete entire
entity. Deletes all entries with
DELFLAG = Y.

b) Update Delete -- Delete performed
before writing an updated entity back tothe database. For these deletes,

* DELFLAG = Y and VERSION = "2S*" are the
only entries deleted. This prevents
deleting version information associated

.4. with an entity.

VERSION: Version attribute name. Used with entries
* having an associated version (ie. ahistory).

LINE: Line number of the DATANAME entry in the table.
The table is sorted by this field to help insure the data
elements are retrieved in the proper order.

-136

'.4W

-V!V W VU W -

Entity Identification Table

The DM uses the Entity Identification table (Fig. 3) to

determine the presence of a data entity in the database.

Used during retrieval and update transaction verification.

entidtable
* phase c6
* type c3

relname c12
keyfld c12

Figure 3. Entity Identification Table Relation

The following entries are currently used:

REQUIREMENTS PHASE

REQ REQ
ACT OBJ
activity dataitem
aname di name

DESIGN PHASE

DES DES
ACT OBJ
process parameter
prname paname

-CODE PHASE

CODE CODE
ACT OBJ

* module variable
modname varname

p.. Multi-Level Transaction Table

* The Multi-Level Transaction Table contains the informa-

Ution necessary to perform multi-level retrievals and

137

updates. This section examines the table's Ingres relation

(Fig. 4) and attribute formats.

ml trans tab
S toolcode clo
S phase c6
: type c4

levels c2
par-name c12
parrel c12
parkey c12
seename c12
sec-rel c12
seckey c12
sec_altname c12
sec alt rel c12

, sec-alt key c12

Figure 4. Multi-Level Transaction Table Relation

Format

TOOLCODE: Tool code (ie. DD, SADT).

PHASE: Phase of data: REQ, DES, CODE

TYPE: Indicates the type of multi-level action to
perform. The acceptable types are the following:

i) ACT -- Action entities only. Does
not use the Secondary information.

2) OBJ -- Object entities only. Does
not use Secondary information.

3) BOTH -- Uses both Parent and
Secondary information.

NOTE: The values used in the Parent and Secondary
entries may differ from the entries used to identify only
the Action or Object entities.

LEVELS: The maximum number of levels of data a tool may
retrieve. Values are 0-99. Level 0 identifies only the
par name and any sec_names and sec _altnames associated with
the parent. This is only for a BOTH request. An ACT or OBJ

138

..-..-.... -.....', , , -, . "."..," -..... ; " ,, , ', x.,',

Level 0 entry is the same as asking for only the single

- entity.

PARNAME: Parent Name. The field contains the entity
name pointed to by the transaction file parent name.

PARREL: Parent Relation name.

PARKEY: Parent Key name. (Attribute name)

EXAMPLE: parname = loaname
par rel = ahierarchy

par-key = hianame

range of r is par rel
retrieve (r.parname)
where (r.parjkey = transparent _name)

Secondary Entries

The secondary entries are used only in BOTH type
transactions. These fields correspond to the data type
opposite of the parent entity type.

SECNAME: Secondary Name. Identifies the entity name of
an entity associated with one of the entities identified by
PARNAME.

SECREL: Secondary Relation Name.

SECKEY: Secondary Key Name.

EXAMPLE: SADT Requirements Phase BOTH transaction

Parent Secondary

name: loaname name: diname
rel: ahierarchy rel: activityio

key: hianame key: aname

Procedures: Based on above example.

Tool: SADT
Phase: REQ
Type: BOTH

Levels: 1
Parent: parentname

1) Retrieve all activity names (loaname) pointed
to by parent-name.

139

I 7 -'- -

* * i2) Repeat Step 1 until all requested levels have
been retrieved or no new activities are identified. For
these successive retrievals, use the activity names iden-
tified in the previous level for the key rather than the
parentname.

3) After all the activities are identified, the
V data items (diname) are retrieved. These entities are

identified by using the identified activity names (aname
loaname) from Steps 1 and 2.

Secondary Alternate Entries

The alternate entries are provided to support the
special cases wheie an entity may be identified in a

-i relation separate from the secondary relation.

"" An example of this is shown below for the Design Phase.

EXAMPLE: Design Phase

Parent Secondary Alternate

name: prcalled name: paname name: iopaname
rel: prcall rel: processio rel: papassed
key: prcalling key: prname key: prcalling

Procedures: The procedures for alternate entities is

the same as the above procedures but Step 3 is repeated

using both the secondary and the alternate information.

Session Control

* * The following relations are used to support the DM

session control functions.

Session Identification Table
Session Entity List

Entity Owner Table
Back-Up Directory Name

0.
Session Identification Table

The Session Identification Table tracks each active

session and maintains information describing the entities

.used in the session. This section examines the Session

140

0..

Identification Table's Ingres relation (Fig. 5) and es-

" tablishes the attribute formats.

sess id tab

S sessionid c12
project c12
parentval c25
levels c2
phase c6
type c4
owner c20
toolcode clO

Figure 5. Session Identification Table Relation

Format

SESSIONID: Session identifier in the SDF. DM uses
this field to verify if a file submitted for update is an
active session file.

PROJECT: Project name of the data contained in the SDF.

S. PARENT VAL: Parent name used to retrieve the SDF
entities. Blank if the entities were not identified using a
multi-level retrieval.

LEVELS: Number of levels retrieved in a multi-level
transaction. Blank if the SDF was not generated using a
multi-level retrieval.

PHASE: Phase of the data in the SDF (REQ,DES,CODE).

* TYPE: Type of the data in the SDF (ACT,OBJ,BOTH)

OWNER: Owner name provided in the transaction request.

TOOLCODE: Tool code (ie. DD, SADT).

Session Entity List

The Session Entity List is a relation which monitors

all checked-out data entities. This section examines the

.4 141

.4

Session Entity List's Ingres relation (Fig. 6) and es-

tablishes the attribute formats.

.9.

. sessentIst
" session id c12
S name c25

I type c3
I.status cl

-,', chkin c3

Figure 6. Session Entity List Relation

Format: The following entries are made for each
checked-out entity. A single entity may have several
entries in different sessions, which are identified by the

: @session id.
SESSION ID: Session identifier used in the SDF and

Session Identity Table.

NAME: Data entity name.

TYPE: Data type of the entity: ACT or OBJ.

STATUS: Identifies the update status of the data
entity.

R -- Read only. No modifications allowed on
entity.

-.9. W -- Write. Entity may be modified or deleted

during the session.

CHKIN: Used by the DM when checking-in an updated
session file. Values are "IN" or

Entity Owner Table

The Entity Owner Table is used by the DM to determine

an entity's owner when being checked-out or deleted. This

section examines the Entity Owner Table's Ingres relation

(Fig. 7) and establishes the attribute formats.

142

entowner tab
: phase c6
1 type c3

relname c12
keyfld c12
owner attr c12

Figure 7. Entity Owner Table Relation

Format

PHASE: Phase of the data entity being requested for
update. (REQ,DES,CODE)

TYPE: Type of the data entity being requested for
update. (ACT, OBJ)

RELNAME: Relation name containing an entity's owner
name. Currently, all entity owners are identified in the
entity's History relation.

KEYFLD: Key attribute name in RELNAME which corresponds

to the data entity name. Currently, Xname where X cor-
responds to the entity's type (ie. a - activity, pa -
parameter).

OWNERATTR: Attribute name in RELNAME which contains
the entity's owner name. The contents are compared against
the transaction owner name. Only entities where these two
values are equal may be modified. Currently, author is the
attribute name which identifies an entity's owner.

Back-Up Directory Name

The Back-Up Directory Name relation (Fig. 8) consists

of a single entry containing the name of the directory which

contains all session back-up files created while using the

database. These back-up files are used primarily for error

recovery. The back-up file name is the same as the file's

__session identifier.

1-

143

I~ . . -j , , w w% , -% %° - - % j % • - , , , . , " " . ' "

bkupdirname

dirname cloo

Figure 7. Entity Owner Table Relation

Format

DIRNAME: Contains the FULL path name to the directory
being used to store the back-up session files used in this
database. This is a REQUIRED field. The DM will not run
without a valid entry in this relation.

EXAMPLE: " /course/course/ee690/fa87/sessionbkup.dir/"

NOTE: The blank before the first / must be included.
No space can follow the last I.

Complete Sample Session

The following example shows the steps followed in a

complete session.

Transaction Parameters:

Tool - SADT
Phase - REQ
Type - BOTH

Parent - ParentName
Levels - 1

Session Retrieval

1) Build list of activities and data items
identified using the ml trans tab.

2) Use the entid table to determine which of the
identified entities exist in the database. Also
identify the status of the existing entities.

3) Use entowner tab to determine the owner of
existing entities.

4) Add the valid entities, their status, and the

associated session identifier to the sessentIst.

5) Enter session in the sess idtab.

144

6) Use the tool data definition tables to retrieve

N& %' the activities and data items which are written to
the SDF.

7) Make back-up copy of the completed SDF using
the directory contained in bkup dirname.

Tool

1) Perform updates.

-. 2) Submit modified file back to DM for database
update.

Session Update

1) Verify the SDF session id is a currently active
session using the sess id tab.

0 2) Identify new entities to be written to the
database. Use ent id table to determine if the

- entity already exists. Error if entity name is
already used.

3) Check for invalid update status using the
sessent 1st (ie. a W status submitted for an
entity checked-out in a R status). Error if
invalid status detected.

4) Check all entities back in by setting
sess-ent Ist.chkin = "IN".

5) Set all entity statuses to R which were not
checked-in.

6) Perform updates using the appropriate tool data
definition tables.

6a) Any errors encountered at this point
require the use of the back-up session
file to perform error recovery.

O. 6b) Exit

7) Delete all sessentIst entries identified by
the SDF session id.

8) Delete sess-id tab entry identified by the SDF
3.4 session id.

9) Delete back-up session file.

145

o1

W~.-

.* .K Appendix D: User's Manual for the
SEL Data Manager

Data Manager Overview

The Data Manager (DM) is a tool-database interface
which permits any of the Software Engineering Laboratory
(SEL) tools to use a central Ingres database. The basic
requirements to use the DM are to have an account with
Ingres access and access to the program ds. Your instructor
will provide the appropriate login name and work directory
necessary to use the DM.

The DM provides two basic functions: data retrieval and
database update. These two functions consist of three
steps: file transfer, DM transaction file generation, and DM
execution. File transfer is necessary to move a tool
generated data file to the DM system's working directory for
updating the database and to move a DM generated tool file
to the tool's system. Transaction file generation builds
the instruction file used by the DM to perform its database
transactions. The transaction file is built using an
interactive menu. The remaining step is the execution of
the DM using the generated transaction file.

"The following sample scenario shows the steps which

constitute a typical session.

Sample Session: A user will execute dm to
generate a transaction request to retrieve for
update the needed data entity(s) from the data-
base. On receipt of the request, the data manager
will retrieve the data and provide this data back
to the requestor in a session file using the
provided session file name.

The user will perform the necessary file
transfer procedures to download the session file
to the appropriate tool system. The user may

• manipulate this set of data entities by modifying
or deleting the entities or by adding new entities
to the file. When all changes have been made to
the file, the session file must be transferred
back to the DM system.

146

O

- The user executes da to generate a transac-
tion request to update the database using the
modified session file. On receipt of the request,
the data manager will upload the data to the
database. At the successful completion of the
update, the session is terminated.

Each step in using the DM is discussed with sample
sessions provided. Because each tool may reside on dif-
ferent systems, a separate attachment is provided for each
tool describing the file transfer procedures to follow when
using a particular tool. These attachments also include any
special DM1 transaction requirements and limitations.

Please read the following instructions AND the ap-
propriate tool attachment before using the DM.

File Transfer

The DM reads and generates tool files. For data
retrievals, the DM generates a tool file which must be
transferred to the tool system. You are responsible for
performing these transfers.

Procedures: (Refer to the appropriate tool attachment)

RETRIEVALS: File transfer is the last step and
occurs after the data manager finishes execution.

UPDATES: File transfer must be performed before
executing the data manager.

d. Transaction Generation

The DM's execution is directed by a transaction file.
This transaction file is generated using the interactive
menu provided by din.

4. Procedures:

1. For updates, transfer the tool file to the DM
system.

2. Login to the DM system using the instructor
provided login account and change directory to the proper
working directory.

147

Example: (SSC system)

login: ee690
password:

SSC% cd fa87<CR>
SSC%

3. For updates, check that the file transferred in
Step 1 is in the directory. (SSC% is -1 filename<CR> ->

provides date the file was created to prevent using an old
version.)

For retrievals, the DM creates a file to contain
the retrieved data. If the file already exists, the new
data overwrites the old contents. If the contents of any of
the old files are needed, either provide the DM a different
session file name for the new contents or rename the old
file (SSC% mv oldfile newfile<CR>).

4. Execute the Data Manager:

SSC% dm<CR>

-This generates the following menu:

~14'4J

'.

4.
,1

'" 148

4. , ' -. . ." ' ."- -"- ." - . .- "-"- .- " -"" -"- '- ' .'' '; '% -'.'"" "-'"--- -

S38*2SBEGINNING OF DATA MANAGER MENU 2*S

DATA MANAGER EXECUTION MENU

1. Build new transaction file for execution.
2. Use existing transaction file for execution.
3. Exit

ENTER CHOICE:

Enter transaction file name:

DATA MANAGER

TRANSACTION RECORD MENU

TOOL SELECTION
1. Sun SADT Editor
2. Data Dictionary Editor

ENTER CHOICE:[]

DATABASE NAME:[-------------I

SESSION OWNER NAME:[----------------------I

TRANSACTION INDICATOR SELECTION
1. RETRIEVE DATA
2. RETRIEVE DATA FOR UPDATE
3. WRITE NEW DATA

*4. WRITE UPDATED DATA
5. DELETE ENTITY
6. ABORT SESSION
7. EXIT TRANSACTION MENU

ENTER CHOICE:[J

* SESSION IDENTIFICATION:[-------------I

SESSION FILE NAME:[--------------------------I

PROJECT:[-------------

TYPE SELECTION
1. ACTIVITY
2. OBJECT
3. BOTH

* ENTER CHOICE:[

149

*~ ~. -. TRANSACTION ENTITY SELECTION
1. PARENT/LEVEL TRANSACTION
2. SPECIFIC ENTITIES

ENTER CHOICE:[

-. PARENT NAME:[--------------------------I

LEVELS: [--]

ENTITY NAME:[--------------------------I

ENTITY TYPE
1. ACTION
2. OBJECT

ENTER CHOICE:[

ADD ANOTHER ENTITY (Y or N):[I

TYPE OF DATA MANAGER EXECUTION

p' 1. Background (Terminal remains available for other uses
during DM execution)

2. Foreground (Terminal is used exclusively by DM and is
unavailable during entire DMI execution)

3. Exit

ENTER CHOICE:

:z~s*:gs::END OF DATA MANAGER MENU :*:** *

**NOTE: The menu presented above shows every field used for
any type of transaction. Not every field is used for every
transaction. Only the fields required for a specified
TRANSACTION INDICATOR will be presented. You must provide a

* valid answer for any field presented for a particular
transaction. The requirements and use of each field is
presented below.

FIELD REQUIREMENTS: (NOTE: All fields are case sensi-
tive)

TOOL SELECTION: Determines the format of the tool
*file the DM will read or generate.

150

40o %NN

DATABASE NAME: Database containing the tool data.
Provided by course instructor.

SESSION OWNER NAME: Name used to determine user
update and retrievali privileges, only the AUTHOR may modify
an entity. Users should try to use the same name as the one

* used in the entity's AUTHOR field. (SUGGESTION: Maintain
consistency of AUTHOR name of all entities used in a project
by you and your team to permit easy update and retrieval.)

TRANSACTION INDICATOR SELECTION:

1. RETRIEVE DATA -- Retrieves data without
checking for ownership. User is not permitted to modify any
entities retrieved in this manner. Retrieved entities are
stored in the session file specified by SESSION FILE NAME.

2. RETRIEVE DATA FOR UPDATE -- Retrieves data
whicb may be updated. This transaction generates a session
which tracks the entities which were checked out and their

0 status. The status of each entity is maintained in the
session file. The status is either Retrieve or Write. Only

* ~* the entities in a Write status can be modified. The updated
* entities are resubmitted to the database using 4. WRITE

UPDATED DATA. (**ATTENTION: Control files are generated
for each session. No one can modify any entity you have

10 checked-out in a Write status. If you do not want to submit
the changes you made to the database, 6. ABORT SESSION may
be used to release all your checked-out entities. To modify
entities which belonged to an aborted session, the entities
will need to be checked-out again.)

3. WRITE NEW DATA -- Writes all new entities to
the database. This option is used when the tool file
contains all new entities which are not currently in the
database.

A. 4. WRITE UPDATED DATA -- Used in conjunction
0with 2. RETRIEVE DATA FOR UPDATE. When all modifications,

if any, have been made to the checked-out data, including
addition of new entities, the session file is submitted to
the DM for database updates.

0. 5. DELETE ENTITY -- Used to delete entities
which are no longer used or needed.

6. ABORT SESSION -- Used to release any
entities which have been checked out. Requires the session
identification of the checked-out data. The session id is

* shown in the .res file generated when using Background
.. <. execution (option 1). For Foreground execution (option 2)

-1WIN151

0 M JA LVA- :L

4,

11

jobs, the session identification is the fourth line of the
session file (SESSION FILE NAME with a .dbs extension).

7. EXIT TRANSACTION MENU -- Exit without
processing the transaction.

SESSION IDENTIFICATION: Identification of the
session to be aborted. Format: Field always starts with a
small a. Example: SESSION IDENTIFICATION:[a10318712345]
(*NOTE: The session identification is provided at session
creation time. If this is unavailable, the session iden-
tification can be found on the fourth line of the session
file.

SESSION FILE NAME: For retrievals, contains the name
of the file to which you want the retrieved data to be
written. For updates, contains the file name the DM expects
to contain the entities necessary to perform the update
transactions. Do NOT use the .dbs extension.

PROJECT: The project name of the entities. This is
a very important field and MUST correspond to the project
name of the entities to be retrieved or updated.

TYPE SELECTION:

1. ACTIVITY -- Indicates that only Activity
entities are to be used. (ACTIVITY, PROCESS, MODULE)

2. OBJECT -- Indicates that only Object type
entities are to be used. (DATA ITEM, PARAMETER, VARIABLE)

3. BOTH -- Indicates that both Activity and
Object type entities are to be used.

TRANSACTION ENTITY SELECTION:

1. PARENT/LEVEL TRANSACTION -- Allows those
tools which can process hierarchical entities a means to
retrieve/delete the entities based on the parent name. The
PARENT NAME and LEVELS are determined by the type of
entities to be used and the tool. Refer to the specific
tool attachment for additional information.

2. SPECIFIC ENTITIES -- Used to access the
:specific entities. This method is much faster than the
PARENT/LEVEL method for accessing a limited number of
entities.

ENTITY TYPE: Used when BOTH is chosen in the TYPE
SELECTION. Allows the user to indicate the TYPE of each

152

.- - -- . " . ' " .- . .' . - - ' . , " - - - " " . - -? - " ' " - - " %

entity. Answer the ADD ANOTHER ENTITY with a N when all the
desired entities have been entered.

DATA MANAGER EXECUTION

The Data Manager provides two types of DM execution.

1. Background -- This type of execution does not
use the terminal during processing and allows the user to
either perform other transactions or logout. This is the
recommended method for transactions containing 10 or more
entities. It is also highly recommended for PARENT/LEVEL
type transactions. The DM execution results are stored in
transfilename.res. The .res file shows the entities which
were successfully retrieved or written and contains any
error messages which were generated during execution. This
file contains the DM results only, do NOT confuse it with
the SESSION FILE you provided. (HINT: The job number
provided when the DM begins execution can be used to check
the status of the execution.

Use the command: % ps alx jobnum<CR>)

2. Foreground -- This type of execution uses the
terminal for displaying the DM results during execution.

9f V" The terminal is unavailable for other use during the DM's
execution. This method is useful when accessing a small
number of entities, especially during retrievals because the
user knows when the DM finishes. (HINT: If an error occurs
and you need a hard copy of the error message, re-execute
the DM using 1. Background mode.)

(**CAUTION: Because the database is being modified during
any type of transaction, do NOT attempt to terminate the
job. Improper termination could cause severe database

.- inconsistencies.)

3. EXIT -- Do not execute the DM and return to the

system (%).

SAMPLE SESSIONS
I

The following sample sessions show the menu options which
must be completed for the various types of transactions
available.

153

. RETRIEVALS: (TRANSACTION INDICATOR 1 or 2)

% dm

DATA MANAGER EXECUTION MENU

1. Build new transaction file for execution.
2. Use existing transaction file for execution.
3. Exit

ENTER CHOICE: 1

Enter transaction file name: filename

DATA MANAGER
TRANSACTION RECORD MENU

TOOL SELECTION
1. Sun SADT Editor
2. Data Dictionary Editor

ENTER CHOICE:[1]

DATABASE NAME:[Ijtdb --------

SESSION OWNER NAME:[Team 1A------------

TRANSACTION INDICATOR SELECTION
I. RETRIEVE DATA
2. RETRIEVE DATA FOR UPDATE
3. WRITE NEW DATA
4. WRITE UPDATE DATA
5. DELETE ENTITY
6. ABORT SESSION
7. EXIT TRANSACTION MENU

ENTER CHOICE:[I]

SESSION FILE NAM:[levelO----------------------- I

PROJECT:[Homework 2--]

TYPE SELECTION
1. ACTIVITY
2. OBJECT
3. BOTH

ENTER CHOICE:[31

154

[,

27

PA'- B-.TRANSACTION ENTITY SELECTION
1. PARENT/LEVEL TRANSACTION
2. SPECIFIC ENTITIES

:" ENTER CHOICE:[I]

PARENT:[Build Data Interface]~LEVELS:[1-]

SUCCESSFUL BUILD OF TRANSACTION FILE

TYPE OF DATA MANAGER EXECUTION

1. Background (Terminal remains available for other uses
during DM execution)

2. Foreground (Terminal is used exclusively by DM and is
unavailable during entire DM execution)

3. Exit
4

ENTER CHOICE: 1

Transaction results are in filename.res

p Batch Job is: [1] 19103

155

e-2

DATABASE WRITES: (TRANSACTION INDICATOR 3 or 4)

% dm

DATA MANAGER EXECUTION MENU

1. Build new transaction file for execution.
2. Use existing transaction file for execution.
3. Exit

ENTER CHOICE: 1

Enter transaction file name: filename

DATA MANAGER
TRANSACTION RECORD MENU

fl TOOL SELECTION
S1. Sun SADT Editor

2. Data Dictionary Editor

ENTER CHOICE:[1]

DATABASE NAME:[jtdb -------- I

SESSION OWNER NAME:[Team IA------------

TRANSACTION INDICATOR SELECTION
1. RETRIEVE DATA
2. RETRIEVE DATA FOR UPDATE
3. WRITE NEW DATA
4. WRITE UPDATE DATA
5. DELETE
6. ABORT SESSION
7. EXIT TRANSACTION MENU

ENTER CHOICE:[4]

SESSION FILE NAME:[levelO-----------------------

PROJECT:[Homework 2--]

-V TYPE SELECTION

1. ACTIVITY

2. OBJECT
3. BOTH

ENTER CHOICE:[3]

SUCCESSFUL BUILD OF TRANSACTION FILE

156

S 4 ' . - . - . % . ' .. ; ? . W: , g

.i '~K.-TYPE OF DATA MANAGER EXECUTION

1. Background (Terminal remains available for other uses
during DMI execution)

2. Foreground (Terminal is used exclusively by DM and is
unavailable during entire DM execution)

3. Exit

* ENTER CHOICE: 2

(~Results are printed to screen during execution Z

515

-,' '.-. DELETIONS: (TRANSACTION INDICATOR 5)

% dm

DATA MANAGER EXECUTION MENU

I. Build new transaction file for execution.
2. Use existing transaction file for execution.
3. Exit

ENTER CHOICE: 1

Enter transaction file name: filename

DATA MANAGER
*" TRANSACTION RECORD MENU

TOOL SELECTION
* 1. Sun SADT Editor

2. Data Dictionary Editor

ENTER CHOICE: [11
DATABASE NAME:[jtdb -------- I

SESSION OWNER NAME:[Team 1A------------I

TRANSACTION INDICATOR SELECTION

1. RETRIEVE DATA
2. RETRIEVE DATA FOR UPDATE
3. WRITE NEW DATA
4. WRITE UPDATE DATA
5. DELETE ENTITY
6. ABORT SESSION
7. EXIT TRANSACTION MENU

ENTER CHOICE:[51

PROJECT:[Homework 2--]

TYPE SELECTION
* 1. ACTIVITY

2. OBJECT
3. BOTH

ENTER CHOICE:[3]

158

f .

TRANSACTION ENTITY SELECTION
S1. PARENT/LEVEL TRANSACTION

2. SPECIFIC ENTITIES

ENTER CHOICE:[2]

.. o "- EN T ITY N AM E : [b o x 1 -- - - - - - - -

ENTITY TYPE
1. ACTION
2. OBJECT

ENTER CHOICE:[1]

ADD ANOTHER ENTITY (Y or N):[Y]

ENTITY NAME:[data item I ------------

ENTITY TYPE
; 1. ACTION
0 2. OBJECT

ENTER CHOICE: [2]

ADD ANOTHER ENTITY (Y or N):[N]

SUCCESSFUL BUILD OF TRANSACTION FILE

TYPE OF DATA MANAGER EXECUTION

1. Background (Terminal remains available for other uses
during DM execution)

2. Foreground (Terminal is used exclusively by DM and is
unavailable during entire DM execution)

3. Exit

* ENTER CHOICE: 2

(.8 Results are printed to screen during execution 2*)

0%

159

SN

SESSION ABORT: (TRANSACTION INDICATOR 6)

' -" %dm

DATA MANAGER EXECUTION MENU

" 1. Build new transaction file for execution.
2. Use existing transaction file for execution.
3. Exit

ENTER CHOICE: I

Enter transaction file name: filename

DATA MANAGER
TRANSACTION RECORD MENU

TOOL SELECTION
1. Sun SADT Editor
2. Data Dictionary Editor

ENTER CHOICE:[1I

DATABASE NAME:[jtdb--------I

SESSION OWNER NAME:[Team 1A------------

TRANSACTION INDICATOR SELECTION
1. RETRIEVE DATA
2. RETRIEVE DATA FOR UPDATE
3. WRITE NEW DATA
4. WRITE UPDATE DATA
5. DELETE ENTITY
6. ABORT SESSION

7. EXIT TRANSACTION MENU

ENTER CHOICE:[6]

* SESSION IDENTIFICATION:[aI03087091541

SUCCESSFUL BUILD OF TRANSACTION FILE

TYPE OF DATA MANAGER EXECUTION

'I I. Background (Terminal remains available for other uses
during DM execution)

2. Foreground (Terminal is used exclusively by DM and is
unavailable during entire DM execution)

U. 3. Exit

A nENTER CHOICE:
,'V. ." (*3 Results are printed to screen during execution *3)

160

-4, ----

This ends the sample sessions. Any additional ques-"- tions should be directed to either the class DM manager or
the instructor. The remainder of the User's Manual consists
of the attachments for the separate SEL tools.

'p..

f..

b-A

~161

4k
WN -I -4 . C wp,,

Al.1,-A J

ATTACHMENT 1

User's Manual for the
DATA MANAGER/SADT TOOL Interface

SADT Tool Overview

The SADT tool (SAtool) runs on the ZEUS Sun Work-
station. The database this tool uses resides on the SSC.
The following procedures are provided for this configura-
tion. These instructions provide the basic procedures. For
more specific information concerning Data Manager options,
refer to the Data Manager User's Guide.

SADT Tool Operation

Tool Data File Generation:

The SAtool generates two types of files when building a
0.t SADT diagram. The files have a .dbs and a .gph extension.

The .dbs file contains the diagram's entities in the DM file
format. This is the file which is transferred to the SSC
for database updates.

(**IMPORTANT: A .dbs file is created anytime you store the

diagram using the SAVE FUNCTION. The file you submit to the
DM for database update MUST be saved using the Save db
option of the SAVE FUNCTION. This method performs consis-
tency checks on the data and guarantees that the file is in
the proper format for database transactions.)

SAMPLE DATABASE UPDATE PROCEDURES

STEP 1: Transfer the SAtool modified file to the Data
Manager System. Assumes the two systems used are ZEUS and
the SSC.S

From ZEUS to SSC: (Method used in providing the DM data
for Writing to the database.)

ZEUS% rcp sadtfile.dbs ssc:fa87/sadtfile.dbs

- Z*NOTE: 1. sadtfile.dbs corresponds to the filename
you used, it is NOT the mandatory filename.

2. Use the .dbs extension on the DM system

STEP 2: Login to the SSC using the account provided by the
class instructor.

162

6%
pr

I.,

6 %

,'"" ZEUS% rlogin ssc

SSC Login Header Information

STEP 3: Change to the assigned working directory and check
that the file was successfully transferred.

SSC% cd fa87
SSC% Is -1 sadtfile.dbs

- -wrxr-xr-x 1 ee690 2199 Oct 30 09:34 sadtfile.dbs
SSC%

STEP 4: Begin Data Manager execution.

SSC% dm

DATA MANAGER EXECUTION MENU

1. Build new transaction file for execution.
* 2. Use existing transaction file for execution.

3. Exit

ENTER CHOICE: 1

Enter transaction file name: filename

DATA MANAGER
TRANSACTION RECORD MENU

TOOL SELECTION
1. Sun SADT Editor
2. Data Dictionary Editor

ENTER CHOICE:[11

DATABASE NAME:[jtdb --------

SESSION OWNER NAME:(Team 1A ------------ I **Corresponds to

author name

TRANSACTION INDICATOR SELECTION
* I. RETRIEVE DATA

2. RETRIEVE DATA FOR UPDATE
3. WRITE NEW DATA
4. WRITE UPDATE DATA
5. DELETE ENTITY
6. ABORT SESSION
7. EXIT TRANSACTION MENU

ENTER CHOICE:[31

163

in , x ,, : I : " !: i -
d

-

I~~~~~~~~ ~ ~ ~ ~ - -W 0 -l- - - - - . . - . -- i .

• SESSION FILE NAME:[sadtfile ---------------------
*Do NOT use .dbs extension, it is appended by the system

PROJECT:[Homework 2--]

TYPE SELECTION
1. ACTIVITY
2. OBJECT
3. BOTH

ENTER CHOICE:[31

SUCCESSFUL BUILD OF TRANSACTION FILE

TYPE OF DATA MANAGER EXECUTION

1. Background (Terminal remains available for other uses
during DM execution)

2. Foreground (Terminal is used exclusively by DM and is
unavailable during entire DM execution)

3. Exit

ENTER CHOICE: 2

(33 Results are printed to screen during execution *)
(3 Using foreground execution ties up the terminal 3$)
(,3 throughout execution. You must wait until the 33}
(3 DM finishes execution to do other processing or 33)
(33 to log out. 33)

TRANSACTION COMPLETED

STEP 5: The Data Manager has finished. You may now
continue working on the SSC or logout and return to ZEUS.

ADDITIONAL FILE INFORMATION: The following Is shows the
6 two files used/created during an update transaction. The

filename.ins was created during Transaction Record genera-
tion. It may be reused, if applicable, for option 2 of the
DATA MANAGER EXECUTION MENU.

SSC% is
filename.ins sadtfile.dbs

NOTE: Delete both these files when they are no longer
needed. This will prevent excessive disk usage and prevent
accidental usage of the files.

A
'.'

-S. 164

I

SAMPLE DATABASE RETRIEVAL PROCEDURES

The following session shows how to retrieve data from
the database on the SSC and transfer these retrieved
entities to ZEUS. [Assumes user is working on the ZEUS
system. If starting from the SSC, follow instructions
beginning at the first SSC prompt.]

STEP 1: Login to the SSC.

ZEUS% rlogin ssc

SSC Login Header Information

STEP 2: Execute the Data Manager.

SSC% cd fa87
SSC% dm

(2s DATA MANAGER EXECUTION MENU follows. SS)

SESSION FILE NAME: sadtf&ile

S(sadtfile can be any filename compatible with the
SADT tool)

-{2 The results of the retrieval are displayed 23)

SUCCESSFUL RETRIEVAL <-- Indicates no errors occurred

STEP 3: Transfer the retrieved information to the SAtuol
system. *NOTE: The .dbs file extensions. This convention
must be used.

SSC% rcp sadtfile.dbs zeus:fa87/sadtfile.dbs

STEP 4: Logout from SSC and return to the ZEUS system.

SSC% logout

ZEUS%

The retrieved data has been transferred to the ZEUS system
and may now be modified by the SAtool. Follow the Update
Procedures presented above to transfer the data back to the
SSC and update the database.

165

ia

SPECIAL REQUIREMENTS

The SADT editor supports the use of hierarchical data.
This permits a user to use the PARENT/LEVELS option in
retrieving data. The SAtool is limited to only 1 level of
data to be retrieved at one time. The options available are
for a LEVEL of 0 or 1.

LEVEL 0: Retrieves only the activity entity associated
with the PARENT and the data items used by this activity.

LEVEL 1: Retrieves the LEVEL 0 entities and the
activity entities which are subordinate to the PARENT
entity. All data items associated with any of the retrieved
activity entities are also retrieved.

PARENT: The PARENT value corresponds the value used in
the TITLE portion of the SADT diagram.

166

54e

Appendix E: Tool Designer's Guide

Overview

The Data Manager (DM) supports the addition of a new
tool to System 690 by adding the tool's data description
information to the DM's control relations. The key rela-
tion(s) which must be built is the Tool Data Definition
Table(s) which describes the data entity(s) the tool uses.
This guide provides the procedures for definijag a Tool Data
Definition Table and describes the entry classes currently
used by the DM. The procedures for defining the remaining
control relations are also provided. A description of the
Standard Data File's (SDF) use and the Transaction Request
File's format are also provided.

NOTE: The Data Manager Database Relation Definitions,
- ~ the Standard Data File Format, and the User's Manual for the
*SEL Data Manager should be available to provide additional

relation and file information.

WARNING: ONLY the Database Administrator may execute
the following commands because relation permissions are
being set.

Tool Data Definition Table

The Tool Data Definition Table is the most important
table used by the DM. It is also the most complex to
create. This section examines how the table is created and
provides a description of the entry classes currently

-p recognized by the DM.

-' Table Creation

A tool requires that a Tool Data Definition Table be
established for each data entity type it uses within a
phase. Each of these tables must have a unique relation

-, name. The format to use for the table's name is tool code
and data type, ie. sadtdata, ddproc. This name may be no
longer than 12 characters and must begin with a letter.

The following create command provides the Ingres
-~ instructions to create a new data definition table. The

example is for the SADT Editor's data item entity.

167

04

create sadtdata (dataname = c12,
relname = c12,
keyl = c12,
key2 = c12,
flddesc = c4,
entryclass = c2,
mlfld = cl,
numflds = c3,
direction = c10,
type = c1o,
delflag = cl,
version = c12,
line = i2)

\g
modify sadtdata to isam on line\g
range of r is sadtdata
define permit retrieve on r to all
\g

Entry Class Definitions

The field formats and values for the Tool Data Defini-
tion Table are provided in the Data Manager Database

Relation Definitions. The entry class determines the
database access procedures to use in retrieving or updating
a data element. All the data element's currently used in
the six data dictionary entries can be described using only
eight entry classes. New tools should be able to use the
existing classes unless the tool requires the use of a
relation(s) which is not currently defined in the database
and shares no common characteristics with any of the current
entry classes.

This section establishes the procedures to use in deter-
mining each field's value in relation to its use in the data
element's entry class. The eight entry classes currently
used by the DM are provided. The table entries used by the
SADT Editor's activity (sadtact) and data item (sadtdata)
are provided as examples. The Data Dictionary Editor's
parameter (ddparam) table entries are also used.

CLASS 1: Describes an ACTION entity's identification
relation, ie. activity, process, or module. For action
entities, line I MUST be the entity's name field. The DM
depends on this field being the first data element in the

-: SDF for entity identification during update transactions.

168

.'4. append to sadtact (dataname = "aname",
relname = "dataitem",
keyl = "aname",
key2 = "*\$\,",1
flddesc = "25",
entryclass = "1",
mifid "N",..,mlfld = No,

numflds = "2",
direction =
type =
delflag =
version =
line = 1)

am \g

CLASS 2: Identifies data elements which are retrieved

based on a line number, ie. description or algorithm. This
class requires the relation's line attribute be named line.

S append to sadtdata (dataname = "description",
relname "didesc",
keyl "diname",
key2

.- flddesc = "60",
entryclass = "2",
mlfld = "Y",
numflds = "I",
direction =
type =
delflag = "y",
version =
line = 6)

CLASS 3: Identifies data elements which use type,

* direction, or both of these attributes to identify the
desired entries within a relation. The attribute names must
be type and direction.

In the following example, please note:

Jo 1) Only the type field was used to identify the
proper aname to access. The direction field

*' contains "'**" (the use of the \ is required by
Ingres because * is a wild-card character) because

*it is not used to identify activityio elements.
Other data dictionary entries (ie. varpassed) use

.. ,", only the direction field to differentiate between

the relation's entries. Finally, entries such as

169

processio use both type and direction to identify
the relation's entries. Always use the "***" to
mark unused fields.

2) The delflag was set to "Y" for the following
entry because it is the first of the activityio
entities used by the DM. The three remaining
activityio entries will use "N".

append to sadtact (dataname = "aname",
relname = "activityio",
keyl = "diname",
key2 =
flddesc = "25",
entryclass = "3",
alfld = "N",
numflds = "1",
direction =
type = "IN",
delflag =
version =
line = 3)

\g

CLASS 4: Identifies group fields, ie. alias, reference.

append to sadtdata (dataname = "reference",
relname = "diref",
keyl = "diname",
key2 =
flddesc = "60",
entryclass "4",
mlfld "N",

., numflds = "2",
direction =
type =
delflag =
version =
line = 17)

170

append to sadtdata (dataname = "reftype",
relname = "diref",
keyl = "diname",
key2 =
flddesc = "25",
entryclass = "4",

* mlfld = "N",
numflds = " I" ,
direction =
type =
delflag = "N",
version = "**IV,
line = 18)

CLASS 5: Identifies hierarchical relations. These
relation's delflag usage is critical to prevent deleting
unowned relation entries. The higher order element (keyl)

* has the delflag = "Y". The lower level entry is "owned" by
a higher entity and does not necessarily belong to the
entity being used. If both elements were deleted, the
possibility exists to modify entities outside the current
operation's domain.

append to sadtdata (dataname = "hidiname",
relname = "dihierarchy",
keyl = "lodiname",
key2 =
flddesc = "25",
entryclass = "5",
mlfld = "N",
numflds = "1",
direction =
type =

* delflag = "N",
version =
line = 8)

\g

171

O

append to sadtdata (dataname = "lodiname",
relname = "dihierarchy",
keyl = "hidiname",
key2 =
flddesc = "25",
entryclass = "5",
mlfld = "N",
numflds = "1I",
direction =
type =
delflag =
version =
line = 9)

~\g

CLASS 6: Identifies the history relation. Unique aspect
of these relations is their use of a version field. These
are currently the only relations which have multiple
versions. All versions are maintained in the database, but

* only the latest version is retrieved for tool use.

The DM recognizes relations which have multiple
versions through the table's version entry. Only those
version entries without "**" are recognized for update and
retrieval purposes.

append to sadtdata (dataname = "version",

relname = "dihistory",

keyl = "diname",
key2 =
flddesc "10",
entryclass = "6",

, ulfld = "N",
numflds "4",
direction
type =
delflag = "y",
version = "version",
line = 19)~\g

CLASS 7: Same data structure as CLASS 3 data BUT these
0 entries are not updated during a session. These fields are

included to provide additional data dictionary information.
An example is the DESTINATION entries used in the Data
Dictionary Data Item entry. The DM uses CLASS 3 retrieval
procedures for generating the SDF entries, but uses CLASS 7
procedures when reading the updated SDF.

172

CLASS 8: Same function as CLASS I entries but the data
elements making up this class occur throughout a dictionary
entry. The entries are the OBJECT entities: data item,
parameter, and variable. The definition table's first entry
is still the identity relation's name field, but the
remaining elements are used later in the SDF. (Currently
used by the Data Dictionary Editor in the parameter entry.)

NUMFLD USE: In CLASS 8 relations, attributes do not occur
contiguously in the data definition table. If only a single
attribute is being accessed numfld 1 1. If contiguous
attributes are being accessed, use the numbering scheme
n,n-l,...,l for the numfld entries.

append to ddparam (dataname = "paname",
relname = "parameter",
keyl = "paname",
key2 =
flddesc "25",
entryclass = "8",

* mlfld = "N",
= numflds = "1"

direction =
type =
delflag = "y",
version =
line = 1)

"a' \g

(Description is the second entry in the table.)

append to ddparam (dataname = "datatype",
relnaze = "parameter",
keyl = "paname",
key2 =
flddesc = "25",
entryclass = "8",
mlfld = "N",
numflds ="4",
direction =
type =
delflag = "N",
version

* line = 3)

FUTURE CLASSES: New DM entry classes will be for those
elements which are used in a manner different from those
identified or whose relations use a different access method.
The best guide for adding a new entry class will be the
existing classes. The Class 8 entries will probably provide

173

N

4'. * ', --' *4*. " r
"

" '.:. .".:, "., " " ". ./ .'.' ." ' . " /;**' ',

the best starting point for identifying the needed table
t .field entries. Warning: Be very careful in setting the

delflag values. Improper setting of the flag can cause
inconsistencies both in the entity and the entire project.

To add a new class, the DM will have to be modified.
The DM is structured so only the class X retrieval and
classX write modules will have to be added. This is a
programming effort which requires knowledge of both C and
EQUEL. As above, the code used for the other classes
provides an excellent guide for developing the new code.

Other Control Relations

The remaining control relations support the DM either
in performing database accesses or providing session
control. This section provides the Ingres commands to
create the relations and a sample relation entry.

Tool Description Table

The Tool Description Table identifies the Tool Data
Definition Table that a tool uses in writing or reading the
tool's SDF. Note: There may be similarities between the
data definition table requirements for different tools using
the same data dictionary data and the same table could
satisfy both tools' needs. This is highly discouraged
because a change in one tool's data needs could adversely
impact the other tools using the same table.

Create: Create the tool description table. The only field
which does not require a value to be assigned is the
description field. This field is provided to allow the
database administrator to further identify a description
table and its user.

create tooldesctab (code = cO,
* phase = c6,

type = c3,
def table = c12,
description = c60)

'. \g
modify tooldesctab to ism on code,

0 _ phase,
type

\g
range of r is tooldesctab
define permit retrieve on r to all

A \g

174

e..
0' " " , * ._

I)

Sample Entries: The following samples show how the data
definition tables containing the two data types used by the
SADT Editor are added to the tool description table.

append to tooldesc tab (code = "SADT",
phase = "REQ",
type = "ACT",
deftable = "sadtact",
description = "Johnson's SADT tool")

\g
append to tooldesc tab (code = "SADT",

phase = "RE",
type = "OBJ",
def table = "sadtdata",
description = "Johnson's SADT tool")

P\g

Session Identification Table

*The Session Identification Table contains the infor-
mation the DM used to create the SDF containing the indic-
ated session. The table tracks all active sessions. The
table's contents are manipulated only by the DM.

' Create: Create the session identification table.II.

create sess id tab (session id = c12,
project = c12,

- parentval = c25,
levels = c2,
phase = c6,
type = c4,
owner = c20,
toolcode = c10)

modify sess id tab to isam on sessicn id
* \g

range of r is sess_idtab
define permit all on r to all

W Entity Identification Table

The Entity Identification Table identifies the relation

name and key fields necessary to check for an entity's exis-
Wi! tence and write status. Every data dictionary entry type

has a corresponding entry in the identification table. The
_ sample shows entries for the requirements phase. Similar

entries are also required for the design and implementation
phases.

175

0

CREATE: Create the entity identification table.

create entid-table (phase = c6,
type = c3,
relname = c12,
keyfld = c12)

modify ent idtable to isam on phase,
type

\9
range of r is ent id table
define permit retrieve on r to all

SAMPLE ENTRIES:

append to ent id table (phase = "REQ",
type = "ACT",
relnaze = "activity",
keyfld = "aname")

\9
append to entidtable (phase = "REQ",

type = "OBJ",
relname = "dataitem",
keyfld = "diname")

Entity Owner Table

The Entity Owner Table identifies the relation name and
key fields necessary to identify an entity's owner. Like
the Entity Identification Table, each data dictionary entry
type has a corresponding table entry.

p. CREATE:

create entowner tab (phase = c6,
type = c3,
relname = c12,
keyfld = c12,
ownerattr = c12)

1- \g

O modify entownertab to isam on phase,
type

range of r is entownertab
define permit retrieve on r to all~\9

'1p

I, ' 176

0

SAMPLE ENTRIES:

append to entowner tab (phase = "REQ",
type = "ACT",
relname = "ahistory",
keyfld ="aname",
owner attr = "author")

\g
append to entowner tab (phase = "REW",

type = "OBJ",
relname = "dihistory",
keyfld = "diname",
ownerattr = "author")

\g

.p.._.

Back-Up Directory Name

The Back-Up Directory Name relation contains a single
entry naming the directory name to be used by all users of

* the database for storing their back-up session files. These
files are created by the DM during Update Retrieval transac-
tions and used by the data manager during Update Write error
recovery.

*NOTE: The table contains a single entry which establishes
'10 -the full path name (from the root) for storing back-up

session files. This entry has a very specific format which
must be followed. The format of the entry is:

Format: " /dir/.../.../dir/bkup.dir/"

Example: " /course/course/ee690/fa87/"

Notice the first position before the "/" is a space.This is required by the DM. If the "/" ir accidentally used

in the first position, the DM will encounter errors in
* trying to create and delete the back-up session files. Also

the string ends with a "/" without a trailing space. This
format must be met exactly or none of the backup routines
will work, preventing error recovery during session update
transactions.

* ,CREATE:

create bkup_dirname (dir name = cl00)
\g
range of r is bkup_dirname

define permit retrieve on r to all

177

SAMPLE ENTRY:

append to bkupdirname
(dirname = " /course/course/ee690/fa87/bkup.dir/")

- \g

Multi-Level Transaction Table

The Multi-Level Transaction Table contains the rela-
tions and keys necessary to perform hierarchical database
retrievals and deletes based on a parent name and the
indicated number of levels. This table contains the entries
for all tools using the database. The entries are tool,
phase, and type dependent. Each tool which supports multi-
level transactions has an entry(s). The entries identify
whether to retrieve only ACT or OBJ entities or BOTH entity
types. Notice that if a tool can manipulate both a single
entity type and both entity types, the relations used for
the parent identification may differ.

CREATE:

create ml_transtab (toolname = CIO,
phase = c6,
type = c4,
levels = c2,
par-name = c12,
parrel = c12,
parkey = c12,
sec name = c12,
secrel = c12,
sec key = c12,
sec alt name = c12,
sec_altrel = c12,
secalt_key = c12)

\g
S. modify mltranstab to isam on toolname,

phase
\g
range of r is mltranstab
define permit retrieve on r to all

O. \g

178

SAMPLE ENTRIES:

append to ml trans tab (toolname =
phase = "DES",
type = "BOTH" ,
levels = "I",
par_name = "prcall",
parrel = "prcalling",
parkey = "prcalled",
sec_name = "processio",
sec_rel = "prname",
sec-key = "paname",
secalt name "papassed",
sec altrel = "prcalling",
sec_altkey = "iopaname")

\g

append to mltrans-tab (toolname = "DD",
* phase = "DES",

type = "OBJ",
* levels = "1",

parname "pahierarchy",
par_rel "hipaname",
par-key = "lopaname",
secname =
sec rel =
sec key =
sec altname =

4. sec alt rel =
sec alt-key =-N \g

Standard Data File

The SDF requirements are identified in the Standard
Data File Format. The key aspects of the SDF are:

1) The entities must be ordered in the file

according to the data definition table order. The
tool may not alter this order.

2) The entity order is action entities then
. object entities.

3) Entities in a D (delete) status do not have a
corresponding entry in the data elements.

4) The first DATANAME in any entity must cor-
respond to that entity's identifying attribute,

-.. ie. aname, paname.

5179

4OMN

5) Every DATANAME in the tool's data definition
S .table must be included in the SDF. The DM expects

these elements to be present and generates an
error if any are missing. The DM does not write
the "blank" contents to the database. On retriev-
als, the DM will automatically generate a "blank"
contents field for the DATANAME.

*, Transaction Request File Format

The Transaction Request File (TRF) format is provided
for tool designer's whose tool can generate a batch transac-
tion. This discussion shows the field formats but does not
discuss their role. For this information, refer to the
User's Manual for the SEL Data Manager.

FORMAT

The following format shows the order of entries in a
* transaction request file. The contents of these fields are

transaction dependent. Transactions fall into four general
categories: retrievals, writes, deletes, and session aborts.
Sample entries for these four transaction categories are
also presented.

FILENAME FORMAT REQUIREMENTS: Two types of files are used

in interacting with the DM. The files are the transaction
request file and the SDF. The naming convention used is the
following:

SDF filename.dbs (Must have dbs extension)

TRF -- filename.ins (Must have .ins extension)

GENERAL FORMAT: A transaction file contains the entries
F. shown below, but as stated, not all the fields are used for

every transaction. For the unused fields, the field
contains "***". The use of this filler value can be seen i-
the transaction samples.

4q

_ mmmm m] n4lmm ,.mmm(

m m

AD-Ri" 628 COMMON DATABASE INTERFACE FOR HETEROGENEOUS
SOFTWARE 2/2

ENGINEERING TOOLS(U) AIR FORCE INST OF TECH
WRIGHT-PATTERSON AFS OH SCHOOL OF ENGINEERINGFUNCLASSIFIED T D CONNALLY DEC 87 AFIT/GCS/ENG/87D-8 F/G 12/5 U

EhhnhhllllhEllhhhhEll
EhElnnllEElllhlhllhhIl

,11.0 -

11111!-253.

IU ,__. ,o__~ .

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS-1963 A

St S 5 • 5 5 0 5 5 5 5 • • K. ,

GENERAL FORMAT SAMPLE:

0BEGIN60
TOOL IDENTIFICATION
DATABASE NAME
OWNER NAME
PHASE
TRANSACTION INDICATOR
SESSION IDENTIFIER
SESSION FILE NAME
PROJECT NAME
ENTITY TYPE
PARENT NAME
LEVELS
LIST OF ENTITIES:
Name Type

0 0
0 0

OENDO

RETRIEVAL FORMAT: The retrieval transactions are of two
types: retrieve only (R) and retrieve for update (UR). Two
examples are provided, the first uses a multi-level retrie-
val and the second identifies the specific entities to be
retrieved.

RETRIEVAL SAMPLE 1: Multi-Level Retrieval

OBEGINO
SADT
sadtdb
author-name
REQ
UR

sessionfile-name.dbs
project_Ama
BOTH
parentname_for_ret
1
OENDO

I

181

I

RETRIEVAL SAMPLE 2: Specific Entities

eeBEGINO
SADT
sadtdb
authorname
REQ
R

sessionfile_name.dbs
project_na
BOTH

0
ACTEntity_Name ACT
OBJEntityName OBJ
O"ENDO

WRITE FORMAT: The write transactions are of two types: new
writes (W) and write with update (UW). Only one example is
provided because the formats of the two transactions are the
same except for the transaction indicator code.

WRITE SAMPLE: Write with Update

@BEGIN@
SADT
sadtdb
authorname
REQ
UW

sessionfile_naue.dbs
project nm
BOTH

0
IN~O"ENDO"Q

182

0

DELETE FORMAT: A delete transaction (D) allows the tool to
identify the entity(s) to be deleted without having to build
a SDF. The delete transaction supports deleting either
explicitly named entities or via a multi-level transaction.

DELETE SAMPLE:

@"BEGIN@"
DD
dddb
authorname
DES
D

project_na
OBJ

0
Entity. to be deleted OBJ

• @"END@"@

ABORT FORMAT: An abort transaction (A) allows the tool to
abort a session without checking the SDF back-in. This is

,provided in case the SDF is lost or corrupted. The session
identification code is required for this transaction. It is
available in the results (TRFname.res) file which is genera-
ted during batch transactions.

ABORT SAMPLE:

6@BEGINOW
DD
dddb
author-name
DES
A
a08048712325

0
O@ENDO"

Ii1

€ 183

Appendix F: System Configuration Guide

This guide provides the configuration of the Data
Manager (DM), Interactive Transaction Menu, and Data
Dictionary-Data Manager File Translator programs.

Data Manager

The Data Manager code modules use the following include
files:

define.h -- constants definitions
datadef.h -- global data structures
ingdata.h -- global Ingres data structures

The DM consists of the following modules:

build-parentlist.o class_7_write.o
class_1_ret.o class_8_ret.o
class_1_write.o class_8_write.o
class_2 ret.o du main.o

- . class_2_write.o errorroutines.o
class 3_ret.o proglib.o
class_3 write.o retrievedriver mod.o
class_4_ret.o rmain.o
class 4_write.o sessionrethdr mod.o
class 5 ret.o session_wrt_hdrmod.o
class_5_write.o transbuildedit.o
class 6 ret.o wmain.o
class_6_write.o writedriver-mod.o

The DM code can be broken down according to the

* following functions:

Main

dmmain.o

•_ Transaction Handling

transbuild edit.o buildparentlist.o

184

0

Retrievals

rmain.o session -ret -hdr-mod.o
retrieve -driver -mod.o class_1_ret.o
class_2_ret.o class_3_ret.o
class_4_ret.o class_5_ret.o
class_6_ret.o class_8_ret.o

Updates

wmain.o session wrt hdr mod.o
write 'driver mod.o class_1_write.-o
class_2_write.o class_3_write.o
class_4_write.o class_5_write.o
class_6_-write.o class_7_write.o
class_8_write.o

Error Recovery

* error-routines.o

Library Routines

proglib. o

Data Manager Generation

The DII is generated using the Unix make command.
The DM'!Makefile contains the make instructions. The script
make.dm is used. The make-ctm script and a sample DMMake-
file entry are presented. The complete DMMakefile is
provided in Attachment 1.

make .dm

echo 'make -f DMIMakefile'

*make -f DMMakef lle

Sample DMI Makefile Entry

dm-main.o : du-main.body define.h datadef.h ingdata.h
- rm da main. q
- rm dn main.c
cat ingdata.h dn-main.body >> dm-main.q
equel dm-main.q
cc -c dm-main.c

185

AM Interactive Transaction Menu

The transaction menu program provides the interactive
menu which generates the transaction request file.

Source: trans-menu.body

Compile and Link Script: make.menu

rm trans menu.c
cp trans_* enu.body trans -menu.c
echo 'cc -o da menu trans menu.c'
cc -o da-menu trans-menu.c

Data Dictionary-Data Manager File Translator

The DD-DM File Translator program translates a Standard
Data File into a Data Dictionary Editor File format and
vice-versa.

Include Files:

dadefine.h define.h (same as DM)

Source:

DM TO DD CODE DD TO DM CODE

dutodd.c ddtods.c
datoddlib.c ddtodalib.c
build -dxtoddreq.c build -ddtodx-req.c
build-dxtodd-design.c build-ddtodm-design.c

DM to DD Makefile

Makefile for dtodd

dtoki : dintodd~o build-datod req. o builddtodd-design.o\
dmtodd.lib.o
id -o dotodd /lib/CrtO.o dtodd.o buaild -datodd-req.o\

hiilddmtodd-design.o dmtoddlib.o -lc

dtodd.o : cktodd.c dmefine.h define.h
cc -c cbutodd. c

budld-cktokl-design.o : hzild-dmtockl-design.c Awlfine.h define.h
cc -c build dintocd design.c

datocdl ib. o : dtoddlib .c dmefine .h define .h
cc -c d to dlib.c18

MOUM 1186

DD to DM Makefile

Makefile for ddtoda

ddtock : ckitodn.o bild-ddtcxim req.o hild_&itod._design-o\
ddtodolib.o
ld -o ddtcM /iib/CrtO .o ddtoda.o budld -ditodsreq. a

hilid-ddtoa design.o cidtodalib-o -lc

dtAdIn.o : cktou.c doefine.h define.h
cc -c ddtoia. c

bujild cktad._design.o : hui-d_&toa ~design.c doefie.h define~h
cc -c build &itodadesign.c

ddtodalib.o ddtodmlib.c dmdefine.h define.h
cc -c ditod1ib .c

187

Attachment 1

N11V Data Manager Makefile

The following makefile (DM-Makefile) is used to
generate the DM executable code. It is called with the
*ake.du script.

Ma!kefile for d.exe

da.e : do in. o tram-buiild edit .o hidpnent,_list.o\
ruin. o session retdr_ md. o retrieve driver mad-o class_1_ret .o\
class_2jet.o class_-3_ret.o class_4_ret.o clas_5_ret.o class--
ret. o\
class_8-ret.o\
wmin.o session wrt hir i.,d.o write drivermod.o classIwrite.o\
class_2_write .o7 clais _write.o class_4_write .o class_5_write .o\
class_6.yrite.o classj-write.o class8_Write.o\
error-routines. .o proglib. o

id -o da. ece /lib/CrtO .o da _n.. trans-hzild-edit .0 buildpmre-
nt-list. o\
rui3n *o session-ret-hdr-inod. o retrieve-driver mod. o class_?_ret *0
wmin.o session- urtMr mod.o write -driver mod.o class_?_write.o\
error routines- .o proglib.o -lq -lc

dm_ in.o :h jinmin.body define.h dtsief.h, ingdata.h.
- rm do_- nedn.q
- rm c6 sain. c
cat ingdata.h chm -min.body >) cin in.q
equel dm_ in. q
cc -c dmin. c

error-routine o.0 error routines .body define.h datadef.h ingdata-h
- ru error-routines. q
- ru error routines *c
cat ingdata. h error routines, body > error-routines. q
equel error-routies. q
cc -c error-routines. c

build~jprentlist.o : buildparent,_list .body define.h datadef.h in-
gdata.h

- rm hzildparuit,_list.q
- zn buildpmt_list.c
cat ingdata.h hzildparent,_list.body >> build~parentlist.q
equal buildjparentlist .q
or, -c build~jparent_ist.c

188

proghib.o : proglib.body define.h datadef.h ingdata.h
- rim proglib. q
- ru proglib.c
cat ingdata.h proglib.body > proglib.q
equel, proglib.q
cc -c proglib. c

clas I1ret * : class1iret .body define .1 datadef .h ingdata .h
- ia class_1..ret.q
- ru class Iret.c

acat ingdata-h Class1lret.body > class_1_ret.q
equel class_1.ret.q
cc -c classI-ret.c

class2-ret .o : class2ret .body define .h datadef. h ingdata. h
- ia clas_2_ret .q
- ru class2ret.c
cat ingdata-h class2 ret .body > class_2_ret *q
equel class_2ret. q
cc -c class_2_ret.c

class 3_ret.o :clas 3-ret .body define di datadef .h ingdata.h
- ru class_3...ret.q
- ru class_3ret.c
cat ingdata-h class3ret.body > clas_3_ret.q
equel class_3 ret.q
cc -c class 3_-ret *c

class-4_ret * : class_4 ret .body define. h datadef. h ingdata. h
- ru class_4...ret.q
- ru class_4ret. c
cat ingdata.h class_4ret.body > class_4_ret.q
equel1 class_4ret. q
cc -c class_4_ret.c

class-5_ret.o : classS-ret.body definedi datadef.h ingdata.h
- ru class_5ret.q
- ru classSret. c
cat ingdata-h class_5.yet .body > class_5_ret. q
equel. class_5_ret.q
cc -c class_5_ret.c

class_6_ret.o :class_6-ret.body define.h datadef.h ingdata.h
* - zu class_6-ret.q

- ru class_6ret .c
cat ingdata-h clamss_6 ret.body > class_6_ret.q
equel class_6ret.q
cc -c class_6_ret.c

189

class_8_ret.o : class_8_ret.body definm.h datadef.h ingdata.h
- ru class_8. ret. q
- ru class_8 ret.c
cat ingdatai.h class_-8_-ret.body > class_8_ret.q
equel class-8ret.q
cc -c class_8_ret.c

retrieve -driver-mod.o : retrieve driver-wod.bady define.h datadef.h
ingdota.h

- ru retrieve-driver.wod. q
- rm retrieve-driver o.,d .c
cat ingdata.h retrieve-driver -mod. body > retrieve-driver imod. q
equel. retrieve-driver.uKd. q
cc -c retrieve-driver-mod *c

runin.o : uoin.body defineh datadef.h ingdata.h
- rn ri n. q
- rm rmuin.c
cat ingdata.h ruin .body >> ruidn. q
equel rai n. q

* cc -c xuain.c

session-ret-bdr-mod.o :session-ret-bdr mod.body define.h datadef.h
in&gdata.h

- zn ssion ret hdr mod. q
-r session retIr mod .c

.0 catingdata.h session-ret-bdr-mod .body > session-ret-bdr-mod. q

ccue -ce~d~session-retIir-modoq dtdeh

cc -c sessonwret-hdr-mod.q

- zsin session-mwrto:Ir sio-rthr-o. oy dino dtce~
cngat igaahssioar~~~o .oy esohwtfrmd
-quel session-wtdrmod~q
-c ru sessicn-wt-fir-mod *c

cngat iatahssinwthrmdbhy> e o-r-d-o~

- ntrans build edit. c rmbidei~oydfn~ aae~
tingdata.h trn-ul~dtbd tasbidei~

e-uel trans build edit.q
-c rc trans build edit.c

.* 190

011 F -e if *J A

class_1_write.o : class_1_write. body defmne.h datadef.h ingdata.h
- zu class_-1_-write.q
- ru class_1_write.c
cat ingdata.h class_1_write. body > class_1_-write.q
equel class_1_write.q
cc -c class_1_write.c

clss2_write.o :class_2_Write. body define.h datadef.h ingdata.h
- ru class_2_Wite.q
- ru class2_write.c
cat ingdata;.h class2_write.body >> class2_write.q
equel clas_2_write.q
cc -c class_2_write.c

class_3_write.o :class_3_write.body define.h datadef.h ingdata.h
- ra clms3_write.q
- ru class_3_write.c
cat ingdata;.h class3_write.body >> class3_write.q
equel class_3_irite. q
cc -c class_3_write.c

class_4_write.o : class4_-write.body define.h datadef.h ingdata.h
- ru class_4_write.q
- ru class_4_write.c
cat ingdata&.h class4_write.body >> class_4_write.q
eque]. class_4_write.q

cc -c class_4_'rite.c

class_5_write.o :class5_-write.bady define.h datadef.h ingdata.h
- ru class_5_write.q
- ru class_5_write.c
cat ingdata.h class_5_write. body > class_5_write.q
equel class_5_write.q
cc -c class_5_write.c

class_6_write.o :class_6_write.body define.h datadef.h ingdata.h
- ru class_6_write.q
- ru class_6_write.c
cat ingdat;.h clas_6_ Wite. body >> class_6_write.q
equel class_6_ Wite.q
cc -c class_6_write.c

class_7_writa.o :class_7_-write.body define.h datadef.h ingdata.h
- ru class_7_-write.q
- ra class_7_write.c
cat ingdata.h class_7_write.bady >> class_7_Write.q
equel class_-7_-write.q
cc -c class_7_write.c

191

class_8_write.o :class_8_write. body define.h datadef.h ingdata.h

- ru class_8_write.q

cat~~~~ _ndt~ cas8write.body)>> class_8_write.q

cc -c class_8_write.c

mnin.o : unain.body define.h datadef.h ingdata.h
- mu wmin.q
- 1rU u1fL.C
cat ingdata .h momin.body > wain. q
equel wmin. q
cc -c wmin. c

write-driverImod . : write-drivermd .body, define. h datadef. h

- ru write driver nuod.q
- ru write~driver z.,d.c
cat ingdata .h write -driver-nxod .body >> write driver mod.q
equel write-driver-uxod. q
cc -c write driver -md. c

a 192

Appendix G: Summary Paper

Abstract

This paper describes the design and implementation of a

common database interface which integrates a set of heterog-

eneous software engineering tools. These tools run on a

variety of workstations and are combined to form System 690

which provides a software design environment for use within

the Air Force Institute of Technology WAIT) Software

Engineering Laboratory (SEL). The interface was implemented

using a standard data file for all data transfer and a data

manager which provides the database support for the System

* 690 tools. The unique aspects of the interface are its

ability to support tool data changes and the ability to

incorporate new tools into System 690.

Introduction

The goal of System 690 is to provide an integrated

system in which a designer could sit down at a workstation,

download the necessary data from a central database, work on

a portion of the design, and when finished, upload the

* modified data back to the database. This data, when stored

in a comprehensive, centralized database, would provide a

system which could share data between tools and provide the

means to document a software project throughout its entire

life cycle.

193

The objective of this research was to integrate the

System 690 tools by designing and implementing a common

database interface between the tools and a central database.

The interface was implemented using a standard data file to

transfer data between the tools and a data manager which

performs all database transactions. The primary design

consideration was for the interface to support the incor-

poration of new tools into System 690.

Overall System Analysis

The basic objective of System 690 is to support the

standard software development methodology established in the

Software Development Documentation Guidelines and Standards

(5). These guidelines establish the software development

documentation standards for all AFIT software development

projects. The method used to support this standard is a

data dictionary. A dictionary entry is established for the

requirements, design, and implementation phases of the

software life cycle. Each of these phases consists of a set

4 of action entities and a set of object entities for a total

of six types of dictionary entries. Refer to Figure I for a

sample data dictionary entry.

Several thesis efforts have produced a set of automated

tools and a data dictionary database which support the

concepts set forth in the Software Development Documentation

Guidelines and Standards (5). The data dictionary database

contains the schema for all six data dictionary entries.

194

NAME: messparts
DJEc: NETO)-ISO

TYPE: PARAMETER
MDIUMOI : Decomposed message parameters.

DATA TYPE: Composite, probably C structure or PASCAL record.

MIN VALUE: None
MAX VALUE: None
RANGE OF VAUES: None
VALUES: None
PART OF: None
CO TGCN: SC

DBT
SIN
IPN
USE
QW

Buffer
* ALIAS: Message Parts

13ERtED: Passed from Decompose Message to Validate Parts
COMM : Part of earlier design

ALIAS: messy-parts
WHRE WI : Passed fr Dump Data to Flush Buffer.
COMMENT: Part of existing library.

REERECE: MSGPARTS
REFERENCE TYPE: SADTi VERSION: 1.2

VERSION CHANGES: cponent LE dded to allow network messages
DATE: 11/05/85
AU11: T. C. FArtrum
CALLING PRCES: Process Message

PROCESS CALLED: DecomposeMessage(parts list)
DRECTIaON: up
I/O PARAMETER NAME: partslist

CALLING PROCESS: Process Message
PROCESS CALLED: Process Network 4 Messages
DTREC ON: down
I/O PARAMETER NAME: parts

Figure 1. Sample Object Entity Dictionary Entry
in Design Phase (5: 29)

Refer to Figure 2 for the schema of the object entity in the

design phase. The data dictionary database was implemented

,195

using the Ingres relational DBMS and runs under the Unix

operating system on a VAX 11/785.

parameter papassed
project c12 project c12
paname c25 paname c25
datatype c25 prcalling c25
low c15 prcalled c25
hi c15 direction c4
span c60 iopaname c25
status cl

padesc pavalueset
project c12 project c12
paname c25 paname c25
line i2 value c15
description c60

paalias pahierarchy
project c12 project c12
paname c25 hipaname c25
aliasname c25 lopaname c25
comment c60
whereused c25

pahistory paref
project c12 project c12
paname c25 paname c25
version clO reference c60
date c8 reftype c25
author c20
comment c60

Figure 2. Database Schema for an Object Entity
Within the Design Phase (4: 37)

* The existing workstation tools are connected to a VAX

11/785 via a Gandalf network, which creates an excellent

opportunity to create an integrated environment where all

*the tools share data using the Ingres DBMS. However, prior

to this research, only the design phase of the tools could

196

4

interface with Ingres. This configuration (see Fig. 3)

prevented the tools from sharing information and precluded

the use of tools such as automated consistency checkers,

which could provide design consistency throughout the

various phases of a system's design (6: 652). The inability

of the tools to use a common database was the main problem

which prevented integrating the System 690 tools and was the

basis for performing this research.

System Design Analysis

Before beginning the design analysis, several defini-
4

tions are needed. A data entity refers to all the informa-

tion describing a data dictionary entry. The data

entity consists of multiple data elements. These data

elements are the values representing specific data fields in

a data dictionary entry. A session refers to a tool-data

manager interaction where data is retrieved from the

J database, manipulated by the tool, and stored back into the

database. A transaction is a request to the data manager to

perform a database retrieval or update.

The primary requirements of the data manager and

standard data file were for them to adapt to tool data

* changes and support the addition of new tools with their

different file requirements. The data manager performs many

tasks, but its basic function is to retrieve data from and

write data to a common database using the standard data

file. These components will interact in every database

197

F

transaction (see Fig. 4). The following sample session is

provided to show how the data manager and standard data file

will interact to update the common database.

DESIGN FOLEY_____

IDDI

DATABASE

SADTI

FUTURE
TOOLS

Figure 3. Current System 690 Configuration

198

lo0%VV

Sample Session: A user or tool will request a
data entity(s) from the database. on receipt of
the request, the data manager will retrieve the
data and provide this data back to the requestor
in a standard data file. When retrieving the
data, the data manager will provide session
control to maintain database integrity.

When the desired changes have been made to
the data, the tool which checked-out the data,
requests to update the database. The data manager
will use the standard data file, containing any
changes made by the tool, and the session informa-
tion generated during the retrieval to coordinate
and perform the database updates. After the data
is successfully written back to the database, the
session is terminated.

The sample session shows how a typical session is

performed. It also indicates the dual role the standard

data file and session information provide. The impact of

this dual role will be seen throughout the remainder of this

paper.

Standard Data File. The standard data file is the

means used by the data manager to transfer data between

System 690 tools and the common database. It provides a

standard file structure for all tools to use in interfacing

with the data manager. The file is the interface and

therefore must contain not only the requested tool data, but

also provide control information to the tool and data

manager by describing the contents of the file.

The design of the standard file is examined with

respect to its two components: file description header and

data file entries. The file description header design is

based on the need for it to provide the information neces-

199

sary to inform a tool and the data manager what the contents

and structure of the file are. The data file entries'

format design is based on identifying the types and struc-

tures of the data elements being transferred.

i
"DESIGN STANDARD DATADD V DATA FILE£ MANAGER 111780

SCODE

*DD

EDITrOR TOOLS

Figure 4. Requirements System 690 Configuration

200

I *P- -n" ' ' ' ' ' ' + "* r +

File Description Header. The contents of the file

description header are the following: session identifica-

tion, tool/file compatibility header, project, phase, type,

data entity summary, and start/stop time entries. These

fields were combined to produce the file description header

(Fig. 5) used in the standard data file.

The file description header supports the standard data

file's dual role of describing the type of data contained in

the file to both the tools and the data manager. The

session identification field is used to support the data

manager in performing its session control function. The

project, phase, and type identify the specific type and

XIA format of the data entities contained in the data portion of

the file. The entity list provides the names and types of

the entities in the file. This allows the data manager to

verify that the file's data contents correspond to the

header entity list to insure that no entities have been

erroneously added to or deleted from the data file.

Data File Entries. The data portion of the

*standard data file consists of one or more data entity

entries. Each entry is composed of all the data elements

necessary to satisfy a data dictionary entry. The dataI

• .elements are contained in a series of data records (Fig. 6)

and consist of the following fields: dataname, field length,

multi-line indicator, number of fields, direction, type, and

contents.

201
I

These fields provide a full description of a data

element and its use in a data dictionary field. The ability

to describe a data element allows the element records in a

file to be ordered to satisfy a tools's specific data

requirements.

SESSION ID

TOOL ID

PROJECT

PHASE

* TYPE

START TIME

6z& STOP TIME

LIST OF ENTITIES:

Name Type Status

Name Type Status

Figure 5. File Description Header Format

Data File Structure. The standard data file

structure (Fig. 7) is built using the file description

* header and data entity entries. The file contains all ASCII

characters and consists of the file description header, data

* entities, and section delimiters. The delimiters are unique

__ for each section and are designed to help the tools and data

manager maintain their position in the file. The delimiter.

202

or0' t 6tV WW'

also help tool developers read the file's contents for

debugging purposes.

DATANAME

FIELD LENGTH

MULTI-LINE INDICATOR

NUMBER OF FIELDS

DIRECTION

TYPE

0 CONTENTS

mm~k Figure 6. Data Element Record Format

The key feature of the data file is the ability to

place the data element records in a tool-specified order.

The file description header contains the information

describing this ordering to both the tool and the data

manager. The capability to support multiple data record

* orderings allows the standard data file to incorporate tool

data changes and to add new tools to System 690.

Data Manager. The data manager must provide a broad

range of functions. Its primary functions are to retrieve

data from and write data to the database using the standard

data file. The data manager also provides an interface

which allows tools and users to specify the transactions to

203

or r W

be performed. Finally, it provides session control to

protect database integrity.

#*BEGIN@@#

MOHEADER BEGINWQ

<file description header, Fig. 5>

#O#HEADER ENDW@
MfACTION TYPEM#

@##START##@

<entity element record, Fig. 6)

00

0

M#ACTION END###

M~OBJECT TYPE###

@## START# *@

<entity element record, Fig. 6>

@##STOP##@

* 0

0

0

M#OBJECT END*##

Figure 7. Standard Data File Format

204

SJ

Database Functions. The primary components used

by the data manager to perform database transactions are the

tool data definition table and the tool description table.

These tables permit the generic classification of the

entities used by a tool. They support the data manager's

two primary functions which are to perform the database

retrievals necessary to generate the standard data file and

to use the standard data file to perform database updates.

Tool Data Definition Table. The key data manager

requirements are for it to support the retrieval of data

4 dictionary entries, formatting the retrieved data into the

standard file format, and updating the database. The data

definition table (Fig. 8) provides a mechanism which is

flexible enough to incorporate current and future tool data

requirements into a standard data file with little or no

data manager programming being required. The table provides

all the information necessary to retrieve or update a data

element and it contains the information necessary to read

and write the standard data file.

A data definition table is created for each data entity

type used by a tool. Each table has a unique relation name

and is tool, phase, and type specific. The use of multiple

relations localize the impact of tool changes and supports

the requirement to easily incorporate new tools into System

690. To add a new tool, the only requirement is for the

* appropriate tool data definition table(s) be created.

205

The key fields in the table are the data element name,

element's relation name, relation's key names, and the entry

classification of the element's relation. The data name,

relation name, and key fields contain the information

necessary to identify any data field in the database. The

entry class identifies the structure of the data element and

its access method. The combination of the these fields

allows the data manager to access and modify any database

data element.

" DATANAME RELATION KEYFIELD 1 KEYFIELD 2
"1

q FIELDDESCRIPTION ENTRYCLASS MULTILINEINDICATOR

N.

NUMBEROFFIELDS DIRECTION TYPE

DELETEFLAG VERSION LINE

Figure 8. Tool Data Definition Table

The ability to use these fields to update and retrieve

any database element is the key feature of the data manager.

The data definition table entries may be in any order. This

N ordering dictates the order the data elements are written

and read from the standard data file. Because the fields

206
6

-I- ---
may be placed in an arbitrary order, the data manager can

support any ordering of data and thus can support a tool's

* specific file requirements allowing for the easy addition of

new tools to System 690.

The data definition table not only supports the easy

incorporation of new tools, but it does so in a generic

manner. The only requirement to support a new tool is to

identify the entry classification of its data elements. if

the entry classes are the same as existing classes no

programming changes must be made to the data manager. If no

class exists for a specific data element, only changes to

support this new class is required. This greatly enhances

the data manager's ease-of-use for tool designers and it

reduces its maintenance to a very minimal level.

Tool Description Table. The tool description

table (Fig. 9) describes a tool and its data needs to the

data manager. The description table is used by the data

manager for transaction request verification and database

retrievals and updates. There is a tool description table

2 entry for each phase and type of data entity used by a tool.

This is required to identify the specific data definition

table relation describing the requested data dictionary

entry. This table, in conjunction with the data definition

- table, allows the data manager to identify the standard data

file requirements for any System 690 tool. The description

table identifies the data definition table to use in reading

207

or writing the standard data file and the data definition

table contains the file's structure.

TOOLNAME PHASE ITYPE IDEFINITIONTABLE IDESCRIPTION

Figure 9. Tool Description Table

Tool/User Interface. The tool/user interface is

provided to allow a tool/user to specify to the data manager

the type of transaction to perform and provide the tool/user

the transaction's results. The interface supports both

interactive and batch requests. This provides greater

flexibility for smart tools that can build batch requests

without the user having to interface directly with the data

manager (Fig. 10). The interactive interface (Fig. 11) is

available for use with tools that do not have the sophis-

tication to perform a batch transaction.

Tool Data Request. The tool data request (Fig.

0 12) contains the information needed by the data manager to

perform all of its database transactions. The majority of

the tool data request correspond to those used in the

* session file description header. The fields unique to the

request file are the transaction indicator and the parent

and levels entries.

~ .:~.The transaction indicator informs the data manager the

action it is to take. The transactions supported by the

208

User

Tool

Interface

r,

TolManager
Dtbs

0I

Figure 10. Batch Data Manager Interface

Tool Transacton

ToolStnadDmCmo

).

_..

1A..

S-"Figure 11. Interactive Data Manager Interface

209

'p.

data manager are data retrievals, updates, deletions, and

session aborts. The data delete function is provided to

allow a user to delete specified entities without having to

retrieve them for update, changing their status to delete,

and resubmitting them for write with update. The session

abort transaction was added to provide an easy means for

users or the database administrator to abort an old or cor-

rupted session. This allows data entities which had been

identified as checked-out for use to be made available for

other users.

* The parent and levels fields are provided to allow a

user an easy means of retrieving a large set of related data

entities by providing a single parent name and the entities

1* pointed to by that parent for the specified number of

levels. An example of this is an SADT diagram which

contains multiple action and object entities all of which

are pointed to by its Title. This is an important feature

because new software design tools are incorporating the

ability to simultaneously work with multiple levels of a

1 system's design. This feature precludes having the user or

tool track the entities needed for a session and eliminates

the possibility of omitting entities needed within a

session.

Results Reporting. All transaction results are

reported back to the tool/user. Batch transaction results

are reported through the use of a results file. The results

210

TOOL IDENTIFICATION

DATABASE NAME

PHASE

TYPE

-~ PROJECT NAME

FILE NAME

OWNER NAME

TRANSACTION INDICATOR

SESSION IDENTIFIER

PARENT

LEVELS

14 "1LIST OF ENTITIES:

Name Type
o 0
0 o

Figure 12. Tool Data Request Format

* file contains the list of successfully performed transac-

* tions. In the case of an error, the cause and error

recovery results are placed in the results file. For

* interactive transactions, the same results are reported to

-. the user but the results are displayed directly to the user

via the CRT screen.

Session Control. Session control provides the data

manager librarian function. During retrievals, the data

211

61

manager determines the status of all requested data entities

and generates the session control information. During

updates, the data manager uses this information to perform

transaction verification to insure that only the permitted

modifications have been requested. This session information

is maintained in two tables: session entity table and

session identification table.

Session Entity Table. The session entity table

(Fig. 13) tracks each entity used in a session, its type,

and update status. The session id corresponds to the

associated session identifier. The session identifier

uniquely identifies the entities in a session. The iden-

tifier is used by the data manager to check data entities

back into the database. The status field indicates whether

the entity is in a Read or Write status. Only those

entities in a Write status may be updated during a session.

SESSIONID NAME TYPE I STATUS

Figure 13. Session Entity Table
"

Session Identification Table. The session

$ identification table (Fig. 14) maintains the status of a

session, describes the type of data used in a session, and

identifies the session's owner and tool being used. This

* table supports the data manager update function in verifying

session update requests. It also provides the database

212

0

administrator an easy means to identify session owners.

This benefit of this is the ability to contact a user to

check a session file in when another user needs the same

data entities for update purposes.

PROJECT PARENTNAME LEVELS PHASE TYPE

SESSIONID jOWNER TOOL

Figure 14. Session Identification Table

Common Database

The basic design of the common database is well

documented in Thomas' thesis (16: 84-142). The data manager

required few extensions to this design. These extensions

are required to support the various tables used and to

enable entity status tracking.

Thomas intended for only one database to be used for

all three data dictionary phases. However for flexibility,

this is no longer the case. A database may now contain one

* or more phases. The only requirement is both entity types

(action and object) used within a phase be present.

The data manager's support of multiple database

I provides the opportunity to split the database across

systems. This is important because it provides easier

213

4

% % access for tools and reduces the processing load on the

various systems. This is especially important within the

AFIT environment where the computer systems suffer severe

performance degradation during certain periods of the school

year.

Implementation

The computer resources available within the SEL

dictated the configuration (Fig. 15) used to implement the

data manager, central database, and standard data file. The

data manager was implemented on a VAX 11/785 computer, using

the Berkeley 4.3 Unix operating system. The central

database was developed using the Ingres relational DBMS.

The data manager was developed using the "C" programming

language. The queries were performed using the Embedded

Query Language (EQUEL) provided with Ingres.

To evaluate the data manager and standard data file

implementation, two tools, a data dictionary editor and an

* enhanced SADT editor were modified to interface with the

standard data file. Both tools were able to successfully

use the common interface and access the central database.

The most important result of this integration was the ease

in which the tools were modified to support the interface.

* The programmers modifying the tools found the standard data

file to support the integration very well and did not

require extensive programming effort to incorporate its use

* with their tools.

214

SEL USER

TOOL

Data File

FFile

Figre 5. verll ysenta ISesseitoin

: s

MANAGE Ta2l5

Database -

Summary

The objective of this research was to implement a

common database interface which integrated the SEL tools to

form System 690. The key design consideration was for the

interface to support not only the existing tools but also

'. support the addition of new tools.

The interface was implemented using a standard data

file and a data manager. The key feature of these two

components is their ability to support multiple file

configurations without requiring programming changes to the

*tools or the data manager.

The common database interface successfully integrated

all the tools currently within the SEL to form a fully

integrated System 690. The interface easily supported the

integration of the tools without requiring an extensive

* coding effort for either the tools or the data manager.

The benefit of this interface is just being seen.

Previously, the difficulty of designing a tool and trying to

develop a database interface was too overwhelming for a

single researcher which has resulted in limited new tool

development. Hopefully researchers, without the burden of

developing a complete database interface for their tools,
I

will be encouraged to develop new tools and with a higher

degree of sophistication.

216
I

- -~-.*

Biblionraphy

1) Barabino, G. P. and others. "A Module for Improving
Data Access and Management in an Integrated CAD Environ-
ment," Proceedings of the IEEE Twenty-Second Design Automa-
tion Conference. 577-583. Silver Spring, MD: IEEE Computer
Society Press, 1985.

2) ---- . "A Modular System for Data Management in VLSI
Design," Proceedings of the ACM/IEEE International Con-
ference on Computer Design. 796-801. Silver Spring, MD: IEEE

Computer Society Press, 1984.

3) Fedchak, Elaine. "An Introduction to Software Engineer-
ing Environments," Proceedings of the IEEE Tenth Interna-

j. tional Computer Software and Applications Conference. 456-
463. Washington D.C.: IEEE Computer Society Press, 1986.

a 4) Foley, Capt Jeffrey W. Design of a Data Dictionary
* Editor in a Distributed Software Development Environment.

MS Thesis. School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB OH, June 1986 (AD-
A152406).

5) Hartrum, Thomas C. Software Development Documentation
Guidelines and Standards (Draft 3a). School of Engineering,
Air Force Institute of Technology (AU), Wright-Patterson AFB
OH, September 1986.

6) Hartrum, Thomas C. and Capt Charles W. Hamberger.
"Development of a Distributed Data Dictionary System for
Software Development," Proceedings of the IEEE 1986 National
Aerospace and Electronics Conference, 3:648-655. New York:
IEEE Press, 1986.

7) Horowitz, Ellis and Ronald Williamson. "SODOS: A
Software Documentation Support Environment: Its Use,"
Proceedings of the IEEE Eighth International Conference on
Software Engineering. 8-14. Silver Spring, MD: IEEE Computer
Society Press, 1985.

8) Hsu, Arding and others. "A Design Environment That
* $Integrates Tools, Database, and User Interface," Proceedings

of the IEEE International Conference on Computer Design:
" VLSI in Computers. 733-736. Silver Spring, MD: IEEE Computer

Society Press, 1984.

9) Johnson, Capt Steven E. A Graphics Editor for Struc-
__ tured Analysis with a Data Dictionary. MS Thesis. School

of Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB OH, December 1987.

217

S . - , , j ' - -

10) Kalay, Yehunda E. "A Database Management Approach to
CAD/CAM Systems Integration," Proceedings of the IEEE
Twenty-Second Design Automation Conference. 111-116. Silver
Spring, MD: IEEE Computer Society Press, 1985.

11) Katz, Randy H. "Managing the Chip Desg-n Database,"
IEEE Computer, 16: 26-36 (December 1983).

12) Katz, Randy H. and Tobin J. Lehman "Database Support
for Versions and Alternatives of Large Design Files," IEEE
Transactions on Software Engineering, 10: 191-200 (March
1984).

13) Pressman, Roger S. Software Engineering: A Prac-
titioner's Approach (Second Edition). New York: McGraw-Hill
Book Company, 1987.

14) Purtilo, James. "Polylith: An Environment to Support
Management of Tool Interfaces," Papers of ACM SIGPLAN 85
Symposium. 12-18. New York: Association of Computing

* Machinery, 1985.

15) Stucki, Leon G. "What About CAD/CAM for Software? The
ARGUS Concept," Proceedings of the IEEE Conference on
Software Development Tools, Techniques, and Alternatives.

' 129-135. Silver Spring, MD: IEEE Computer Society Press,
1983.

16) Thomas, Capt Charles W. An Automated/Interactive
Software Engineering Tool to Generate Data Dictionaries. MS
Thesis. School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB OH, December 1984 (AD-
A152215).

17) Urscheler, Capt James. An Interactive Graphics Editor
for SADT Diagrams. School of Engineering, Air Force

Institute of Technology (AU), Wright-Patterson AFB OH,
* December 1986 (AD-A177663).

'"

S.

218

0. r ,

VITA

Captain Ted D. Connally was barn on 4 August 1958 in

Stanford, Texas. He graduated from Stamford High School in

1976 and attended Texas A&M University, from which he

received the degree of Bachelor of Science in Computer

-. Science in May 1980. Upon graduation, he received a

commission in the USA" through the ROTC program. He entered

active duty in June 1980 at Randolph AFB, Texas where he

served as Programming Team Chief, 3302nd Computer Services

Squadron until July 1984. He then served as Chief, Informa-

0 tion Systems Branch, Air Force Coordinating Office for

Logistics Research, Wright-Patterson AFB, Ohio, until

entering the School of Engineering, Air Force Institute of

Technology in May 1986.

Permanent Address: 603 Dodson Drive

4. Stamford, Texas 79553

421

'4

V

-4

*
4,

I?

4.,

-4,

J

4.-

44

.c.
4-

S.

A /
44

.4,.

01 0 0 0 0 0 0 0 S 0 0 0 0 S S S S
~ W~ V Y V 4 -. V~ ~ ~C 4W VVr

' 4

V

